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Abstract—The purpose of this project was to build an eight-bit 

calculator. The calculator is able to perform addition, 

subtraction, multiplication, and division of signed eight-bit 

numbers. The numbers and math operator are inputted through 

a keyboard and the output is displayed on the seven-segment 

display on a Nexys board.  

I. INTRODUCTION 

The goal for this project was to create a simple calculator 
that performs basic math functions such as addition, 
subtraction, multiplication, and division of signed eight-bit 
binary numbers. The motivation for the project was to use 
skills learned from the Digital Logic class to create a useful 
device on an FPGA. 

Creating the calculator involved using several topics that 
were covered in the Digital Logic class. These topics include: 
reading inputs from a keyboard, using registers to store data, 
converting numbers from binary-coded decimal (BCD) to 
binary, performing signed binary math operations, displaying 
numbers on a seven-segment display, and creating a finite 
state machine (FSM) to control the data path circuit. 

Additionally, creating the calculator involved using a topic 
that was not taught in class and had to be learned while 
creating this project. This topic was converting numbers from 
keyboard keycode to two’s complement binary. 

II. METHODOLOGY 

The calculator was designed using structural VHDL. 
Using this method involved dividing tasks that the calculator 
performs into components that do smaller sub-tasks. These 
sub-tasks are performed by easily designable digital 
components, such as adders, subtractors, multipliers and 
dividers, that would be created by individual team members. 

The components in the top level of the structural VHDL 
design are shown in the block diagrams of Figure 1 and Figure 
2 at the end of this report. These figures had to be shrunk to fit 
them in this report, so the reader will need to zoom in to view 
the diagrams. 

Users are able to interact with the calculator by feeding an 
input from a keyboard and viewing the results of their desired 
math operation on a seven-segment display on a Nexys board. 

A. FSM 

The FSM controls all of the data path components in the 
calculator. When the user inputs a number, operand A, and 

presses the Enter key, the FSM sends a signal to a 
demultiplexer and RegisterA to save the signed binary value 
of operand A. All of the register’s in this project were based 
on Dr. Llamocca’s register design [1]. The FSM then clears 
the DigitSaver, a five-bit input shift register to prepare the data 
path circuit for the next input. Simultaneously, the FSM sends 
a signal to convert operand A to its BCD value and display its 
signed decimal value on the seven-segment display. 

The user can then input the math operator. When the user 
inputs the operator and presses the Enter key, the FSM sends 
a signal to save the operator as an encoded two-bit binary 
number in OpSave, a two-bit register. Simultaneously, the 
FSM clears the input shift register and display.  

Next, the user can input a second number, operand B. 
When the Enter key is pressed after inputting operand B, the 
FSM will send signals to save the value for the signed binary 
value of operand B in RegisterB. The FSM will then clear the 
input shift register and send a signal to convert the saved 
signed binary value of operand B into BCD and display its 
signed decimal value on the seven-segment display. 

The user can then press the Enter key again to tell the FSM 
to send a signal to complete the math operation. After the math 
operation has been completed and the result has been saved, 
the FSM sends a signal to convert the signed binary result to 
BCD and display its signed decimal value on the seven-
segment display.  

When the user next presses the Enter key, the FSM clears 
the display and all of the other values saved in the registers so 
it can return to its original state. Once everything is clear, the 
user can start inputting a new math operation. 

B. Input 

The first component, my_ps2keyboard, of the calculator 
receives the number or operator from the keyboard. This 
component was adapted from Dr. Llamocca’s design [1]. Each 
key that is pressed on the keyboard will send a serial eight-bit 
keycode which the component outputs simultaneously 
through an eight-bit bus. The keycode for the possible inputs 
are listed in Table 1. 

This eight-bit keycode is then saved into the DigitSaver 
input register. If the data represents a number, the keycode is 
then converted to a signed eight-bit binary number. This 
binary number is then saved into the appropriate operand 
register after the Enter key is detected in the EnterDetector. 
This procedure is followed for both of the operands. 

 



Table 1. Keycodes for Keyboard Keys 

Key 
Hex 

Keycode 
Keycode 

0 45 0100 0101 

1 16 0001 0110 

2 1E 0001 1110 

3 26 0010 0110 

4 25 0010 0101 

5 2E 0010 1110 

6 36 0011 0110 

7 3D 0011 1101 

8 3E 0011 1110 

9 46 0100 0110 

+ 55 0101 0101 

- 4E 0100 1110 

x 22 0010 0010 

/ 4A 0100 1010 

Enter 5A 0101 1010 

 
If the data in the DigitSaver is an operator, the OpEncoder 

converts the eight-bit keycode into a two-bit binary number 
which represents the appropriate math operation. Once the 
EnterDetector detects the keycode for the Enter key, the two-
bit binary number is saved into OpSave, a two-bit register. 

C. Adder 

In a one-bit full-adder, the sum of two bits is calculated by 
taking the XOR of the input ports X, Y, and carry-in. The 
carry out is calculated by the following equation. 

 
Carry Out = X.Y + X.(Carry In) + (Carry In).Y 

 
The full-adder then outputs the one-bit result of the 

addition and the carry-out bit. 
For the nine-bit adder, there are two inputs, A and B, and 

one output R. By linking nine full-adders through their carry-
in and carry-out ports, it becomes possible to add two sign-
extended eight-bit signed numbers. This sum is then sign 
extended to give a 16-bit output. 

D. Subtractor 

The subtractor is similar to the adder. The main 
differences between the subtractor and the adder are that there 
is a “not gate” that inverts the B input and the carry-in for the 
subtractor is 1 rather than 0. These differences between the 
subtractor and adder allow operand B to be subtracted from 
operand A while using a design that is similar to the adder. 

E. Multiplier 

For the multiplier, first two signed eight-bit numbers are 
inputted and are converted into their eight-bit unsigned 
magnitude. After this process, the eight unsigned bits go into 

the multiplication function and are outputted as the 16-bit 
unsigned result of the multiplication of the magnitudes of the 
two inputs. This output is then inputted into an XOR gate with 
the XOR of the most significant bit (MSB) of each eight-bit 
input. This output is used as the input to a 16-bit adder with a 
carry-in equal to the output of the XOR of the MSB of both 
signed inputs. The other input to the adder is a 16-bit zero. 
This adder turns the unsigned result of the multiplication into 
the signed 16-bit result. 

F. Divider 

The last math operation component is a divider. The 
divider operation is closely based on lab six; however, in the 
project, the number of bits for the inputs are changed to eight  
and the number of bits for the result output is 16. There is also 
an enable input to start the division operation and an output to 
signal when the division is complete. 

Two signed eight-bit numbers are inputted and their 
magnitude is taken to convert them to unsigned. After the 
conversion, one input will go into a normal register and the 
other input will go into a left shift register. The divider 
operation includes an FSM, register, an n-bit adder, another 
left shift registers: one that has a synchronous clear in it, and 
a counter. The result of the division is an integer only, the 
remainder from the division is not shown. 

G. Math Unit 

The math unit is the top-file for the four math operators, 
addition, subtraction, multiplication, and division. It contains 
two eight-bit inputs for operands A and B, a two-bit input to 
indicate which math operation needs to be completed, and a 
one-bit input, EM, used to enable the divider. 

The eight-bit signed binary numbers A and B go into the 
math unit and undergo addition, subtraction, multiplication 
and division simultaneously to obtain four 16-bit results. 

A four-to-one bus multiplexer is then used to output the 
result of the desired math operation. The inputs to the 
multiplexer are the results from each math operation. The 
selector of the multiplexor is the two-bit operator input that 
indicates which 16-bit result is to be outputted. 

The 16-bit output of the multiplexor is the desired results 
and is saved into Register R after the divider outputs a done 
signal through done_D. This done_D signal is used to enable 
the register because the division operation takes the longest 
time out of all of the math operations. Thus, every math 
operation is complete and has a result that is ready to be saved 
by the time that done_D signals that the division is complete. 

H. Output 

The final step of the calculator is to display the numbers 
inputted and the final answer on the seven-segment display on 
the Nexys board. The result, R, and Operands A and B are 
inputted into a multiplexor. In order to input Operand A and 
B in the multiplexor, the eight-bit binary numbers need to be 
sign extended to become a 16-bit binary number. Thus, the 
output of the multiplexor is always 16 bits. The output of this 
multiplexor is determined by the FSM. 

The multiplexer’s signed 16-bit binary number output 
goes into an XOR gate along with the MSB of the number. 



This XOR flips the bits from 1 to 0 and vice versa if it detects 
that the number is negative. This result is then inputted into an 
adder along with a 16-bit zero and a carry-in equal to the MSB 
of the signed 16-bit number. The output of the adder is the 
magnitude of the signed 16-bit number. Also, the MSB of the 
signed 16-bit number is saved into a D Flip Flop. 

The output of the adder is then inputted into Dr. 
Llamocca’s bin2bcd, a component that converts the number 
from binary to BCD [1]. This component has a output that 
indicates when the conversion is done and a 24-bit output that 
outputs the number in BCD. The 24-bit outputted number then 
goes into a register to be stored.  

Since only seven bits can be outputted to the seven-
segment display at any time, only one seven-segment digit 
will be lit at a time. Thus, and modified version of Dr. 
Llamocca’s serializer with a built in BCD to seven segment 
display decoder is used to accomplish this [1]. The 24-bit 
output of the 24-bit register and the output of the D Flip Flop 
then go into the serializer to be displayed onto the seven-
segment display. All of the digits of the number will be cycled 
through quickly by the serializer by turning displays on and 
off while outputting only the data for the seven-segment 
display that is on. The numbers will be cycled fast enough so 
that it looks like they are all being displayed at once.  

III. EXPERIMENTAL SETUP 

For this project, the software, Vivado and hardware 
components, Nexys A-7 and a keyboard, were used to test and 
verify the functionality of the calculator. In Vivado, a 
testbench was created to simulate some of the components of 
the calculator and a testbench was created to test the overall 
design. After simulating, the Nexys board was programmed 
and the calculator was tested with the keyboard through a USB 
connection. The outputs were displayed on the seven-segment 
display of the Nexys board. 

IV. RESULTS 

The adder and subtractor were tested by using a testbench 
to simulate the output. For the adder, the cases that were tested 
were the ones that were believed would easily show whether 
the adder functioned properly and the ones that would most 
likely give an incorrect result. This included cases that would 
result in overflow during the addition of the eight-bit inputs. 
Through testing, it was found that the output was correct in 
each case. For the subtractor’s testbench, cases that were 
similar to that of the adder’s testbench were tested. In each 
case, it was found that the answer was correct. 

The multiplier was tested by using a testbench to simulate 
the result of all allowed inputs. At first the multiplier wasn’t 
functioning properly. The outputted result of the 
multiplications involving one negative number were one 
number higher than the expected result. After troubleshooting 
the code, the multiplier successfully outputted the correct 
answer for each input. The divider also had its own test bench 
that was similar to that of lab 6. The results of the divisions 
were correct. 

When testing the full calculator with a test bench, it was 
discovered that the negative sign didn’t display on the seven-
segment display. After trying some troubleshooting 

techniques to isolate the problem and seeking guidance from 
the instructor, it was discovered that the problem was due to 
missing two ports in the port map of the FSM of the calculator. 

The calculator does have a few constraints for what inputs 
it can handle. The calculator can only handle inputted operand 
with values between -128 and 127. Also, the calculator cannot 
handle an input of zero or inputs that will result in an answer 
of zero. Additionally, when inputting a negative number, it 
must be entered in as a three digit number (e.g. -15 should be 
entered as -015). 

CONCLUSIONS 

The math unit of the calculator was created and simulated 
successfully. The keyboard input into the calculator and the 
resulting output onto the Nexys board were also successfully 
designed. Some of the code did have errors at first but they 
were resolved so that the calculator functioned properly. 

It was more challenging than expected to design the input 
and output components. Many different designs were created 
before the functioning final one was discovered.  

After the data path circuit design was selected, there was 
some challenge with figuring out how the FSM needed to 
function. These challenges were overcome by drawing a box 
to represent the FSM that had arrows pointing at or away from 
the box for every input and output. A version of this box is 
part of the block diagram in Figure 1. 

The states were then defined and listed in Table 2, along 
with notes that showed which conditions would cause errors. 
An algorithmic state machine was then made with the aid of 
the box drawing and the state definitions in Table 2. Writing 
the code for the FSM was simple after that and required little 
troubleshooting. 

Overall, after working together as a team and solving 
problems systematically, the input, math unit, output, and 
FSM were able to be designed successfully to create an eight-
bit calculator. 

Table 2. State Definitions 

State Description Notes 

S1 Receive Operand A   

S2 Save Operand A 
We'll be stuck in S2 

if Operand A is 0 

S3 

Display Operand A on 

7Seg; Receive Operator, 

Save Operator 

  

S4 Receive Operand B   

S5 Save Operand B 
We'll be stuck in S5 

if Operand B is 0 

S6 

Display Operand B on 

7Seg; Receive Calculate 

Command 

  

S7 
Execute Math Operation, 

Convert Output to BCD 

We'll be stuck in S7 

if Result R is 0 

S8 Display Output on 7Seg   



 
Figure 1. Block Diagram of 8-Bit Calculator 

 

 
Figure 2. Vivado’s Block Diagram of 

8-Bit Calculator 
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