
8-Bit Calculator

Final Report

List of Authors (Jaskaran Singh, John Nasir, Nhi Vu, Alyssa Lafever)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: jaskaransingh@oakland.edu, jnasir@oakland.edu, nvu@oakland.edu, anlafever@oakland.edu

Abstract—The purpose of this project was to build an eight-bit

calculator. The calculator is able to perform addition,

subtraction, multiplication, and division of signed eight-bit

numbers. The numbers and math operator are inputted through

a keyboard and the output is displayed on the seven-segment

display on a Nexys board.

I. INTRODUCTION

The goal for this project was to create a simple calculator
that performs basic math functions such as addition,
subtraction, multiplication, and division of signed eight-bit
binary numbers. The motivation for the project was to use
skills learned from the Digital Logic class to create a useful
device on an FPGA.

Creating the calculator involved using several topics that
were covered in the Digital Logic class. These topics include:
reading inputs from a keyboard, using registers to store data,
converting numbers from binary-coded decimal (BCD) to
binary, performing signed binary math operations, displaying
numbers on a seven-segment display, and creating a finite
state machine (FSM) to control the data path circuit.

Additionally, creating the calculator involved using a topic
that was not taught in class and had to be learned while
creating this project. This topic was converting numbers from
keyboard keycode to two’s complement binary.

II. METHODOLOGY

The calculator was designed using structural VHDL.
Using this method involved dividing tasks that the calculator
performs into components that do smaller sub-tasks. These
sub-tasks are performed by easily designable digital
components, such as adders, subtractors, multipliers and
dividers, that would be created by individual team members.

The components in the top level of the structural VHDL
design are shown in the block diagrams of Figure 1 and Figure
2 at the end of this report. These figures had to be shrunk to fit
them in this report, so the reader will need to zoom in to view
the diagrams.

Users are able to interact with the calculator by feeding an
input from a keyboard and viewing the results of their desired
math operation on a seven-segment display on a Nexys board.

A. FSM

The FSM controls all of the data path components in the
calculator. When the user inputs a number, operand A, and

presses the Enter key, the FSM sends a signal to a
demultiplexer and RegisterA to save the signed binary value
of operand A. All of the register’s in this project were based
on Dr. Llamocca’s register design [1]. The FSM then clears
the DigitSaver, a five-bit input shift register to prepare the data
path circuit for the next input. Simultaneously, the FSM sends
a signal to convert operand A to its BCD value and display its
signed decimal value on the seven-segment display.

The user can then input the math operator. When the user
inputs the operator and presses the Enter key, the FSM sends
a signal to save the operator as an encoded two-bit binary
number in OpSave, a two-bit register. Simultaneously, the
FSM clears the input shift register and display.

Next, the user can input a second number, operand B.
When the Enter key is pressed after inputting operand B, the
FSM will send signals to save the value for the signed binary
value of operand B in RegisterB. The FSM will then clear the
input shift register and send a signal to convert the saved
signed binary value of operand B into BCD and display its
signed decimal value on the seven-segment display.

The user can then press the Enter key again to tell the FSM
to send a signal to complete the math operation. After the math
operation has been completed and the result has been saved,
the FSM sends a signal to convert the signed binary result to
BCD and display its signed decimal value on the seven-
segment display.

When the user next presses the Enter key, the FSM clears
the display and all of the other values saved in the registers so
it can return to its original state. Once everything is clear, the
user can start inputting a new math operation.

B. Input

The first component, my_ps2keyboard, of the calculator
receives the number or operator from the keyboard. This
component was adapted from Dr. Llamocca’s design [1]. Each
key that is pressed on the keyboard will send a serial eight-bit
keycode which the component outputs simultaneously
through an eight-bit bus. The keycode for the possible inputs
are listed in Table 1.

This eight-bit keycode is then saved into the DigitSaver
input register. If the data represents a number, the keycode is
then converted to a signed eight-bit binary number. This
binary number is then saved into the appropriate operand
register after the Enter key is detected in the EnterDetector.
This procedure is followed for both of the operands.

Table 1. Keycodes for Keyboard Keys

Key
Hex

Keycode
Keycode

0 45 0100 0101

1 16 0001 0110

2 1E 0001 1110

3 26 0010 0110

4 25 0010 0101

5 2E 0010 1110

6 36 0011 0110

7 3D 0011 1101

8 3E 0011 1110

9 46 0100 0110

+ 55 0101 0101

- 4E 0100 1110

x 22 0010 0010

/ 4A 0100 1010

Enter 5A 0101 1010

If the data in the DigitSaver is an operator, the OpEncoder

converts the eight-bit keycode into a two-bit binary number
which represents the appropriate math operation. Once the
EnterDetector detects the keycode for the Enter key, the two-
bit binary number is saved into OpSave, a two-bit register.

C. Adder

In a one-bit full-adder, the sum of two bits is calculated by
taking the XOR of the input ports X, Y, and carry-in. The
carry out is calculated by the following equation.

Carry Out = X.Y + X.(Carry In) + (Carry In).Y

The full-adder then outputs the one-bit result of the

addition and the carry-out bit.
For the nine-bit adder, there are two inputs, A and B, and

one output R. By linking nine full-adders through their carry-
in and carry-out ports, it becomes possible to add two sign-
extended eight-bit signed numbers. This sum is then sign
extended to give a 16-bit output.

D. Subtractor

The subtractor is similar to the adder. The main
differences between the subtractor and the adder are that there
is a “not gate” that inverts the B input and the carry-in for the
subtractor is 1 rather than 0. These differences between the
subtractor and adder allow operand B to be subtracted from
operand A while using a design that is similar to the adder.

E. Multiplier

For the multiplier, first two signed eight-bit numbers are
inputted and are converted into their eight-bit unsigned
magnitude. After this process, the eight unsigned bits go into

the multiplication function and are outputted as the 16-bit
unsigned result of the multiplication of the magnitudes of the
two inputs. This output is then inputted into an XOR gate with
the XOR of the most significant bit (MSB) of each eight-bit
input. This output is used as the input to a 16-bit adder with a
carry-in equal to the output of the XOR of the MSB of both
signed inputs. The other input to the adder is a 16-bit zero.
This adder turns the unsigned result of the multiplication into
the signed 16-bit result.

F. Divider

The last math operation component is a divider. The
divider operation is closely based on lab six; however, in the
project, the number of bits for the inputs are changed to eight
and the number of bits for the result output is 16. There is also
an enable input to start the division operation and an output to
signal when the division is complete.

Two signed eight-bit numbers are inputted and their
magnitude is taken to convert them to unsigned. After the
conversion, one input will go into a normal register and the
other input will go into a left shift register. The divider
operation includes an FSM, register, an n-bit adder, another
left shift registers: one that has a synchronous clear in it, and
a counter. The result of the division is an integer only, the
remainder from the division is not shown.

G. Math Unit

The math unit is the top-file for the four math operators,
addition, subtraction, multiplication, and division. It contains
two eight-bit inputs for operands A and B, a two-bit input to
indicate which math operation needs to be completed, and a
one-bit input, EM, used to enable the divider.

The eight-bit signed binary numbers A and B go into the
math unit and undergo addition, subtraction, multiplication
and division simultaneously to obtain four 16-bit results.

A four-to-one bus multiplexer is then used to output the
result of the desired math operation. The inputs to the
multiplexer are the results from each math operation. The
selector of the multiplexor is the two-bit operator input that
indicates which 16-bit result is to be outputted.

The 16-bit output of the multiplexor is the desired results
and is saved into Register R after the divider outputs a done
signal through done_D. This done_D signal is used to enable
the register because the division operation takes the longest
time out of all of the math operations. Thus, every math
operation is complete and has a result that is ready to be saved
by the time that done_D signals that the division is complete.

H. Output

The final step of the calculator is to display the numbers
inputted and the final answer on the seven-segment display on
the Nexys board. The result, R, and Operands A and B are
inputted into a multiplexor. In order to input Operand A and
B in the multiplexor, the eight-bit binary numbers need to be
sign extended to become a 16-bit binary number. Thus, the
output of the multiplexor is always 16 bits. The output of this
multiplexor is determined by the FSM.

The multiplexer’s signed 16-bit binary number output
goes into an XOR gate along with the MSB of the number.

This XOR flips the bits from 1 to 0 and vice versa if it detects
that the number is negative. This result is then inputted into an
adder along with a 16-bit zero and a carry-in equal to the MSB
of the signed 16-bit number. The output of the adder is the
magnitude of the signed 16-bit number. Also, the MSB of the
signed 16-bit number is saved into a D Flip Flop.

The output of the adder is then inputted into Dr.
Llamocca’s bin2bcd, a component that converts the number
from binary to BCD [1]. This component has a output that
indicates when the conversion is done and a 24-bit output that
outputs the number in BCD. The 24-bit outputted number then
goes into a register to be stored.

Since only seven bits can be outputted to the seven-
segment display at any time, only one seven-segment digit
will be lit at a time. Thus, and modified version of Dr.
Llamocca’s serializer with a built in BCD to seven segment
display decoder is used to accomplish this [1]. The 24-bit
output of the 24-bit register and the output of the D Flip Flop
then go into the serializer to be displayed onto the seven-
segment display. All of the digits of the number will be cycled
through quickly by the serializer by turning displays on and
off while outputting only the data for the seven-segment
display that is on. The numbers will be cycled fast enough so
that it looks like they are all being displayed at once.

III. EXPERIMENTAL SETUP

For this project, the software, Vivado and hardware
components, Nexys A-7 and a keyboard, were used to test and
verify the functionality of the calculator. In Vivado, a
testbench was created to simulate some of the components of
the calculator and a testbench was created to test the overall
design. After simulating, the Nexys board was programmed
and the calculator was tested with the keyboard through a USB
connection. The outputs were displayed on the seven-segment
display of the Nexys board.

IV. RESULTS

The adder and subtractor were tested by using a testbench
to simulate the output. For the adder, the cases that were tested
were the ones that were believed would easily show whether
the adder functioned properly and the ones that would most
likely give an incorrect result. This included cases that would
result in overflow during the addition of the eight-bit inputs.
Through testing, it was found that the output was correct in
each case. For the subtractor’s testbench, cases that were
similar to that of the adder’s testbench were tested. In each
case, it was found that the answer was correct.

The multiplier was tested by using a testbench to simulate
the result of all allowed inputs. At first the multiplier wasn’t
functioning properly. The outputted result of the
multiplications involving one negative number were one
number higher than the expected result. After troubleshooting
the code, the multiplier successfully outputted the correct
answer for each input. The divider also had its own test bench
that was similar to that of lab 6. The results of the divisions
were correct.

When testing the full calculator with a test bench, it was
discovered that the negative sign didn’t display on the seven-
segment display. After trying some troubleshooting

techniques to isolate the problem and seeking guidance from
the instructor, it was discovered that the problem was due to
missing two ports in the port map of the FSM of the calculator.

The calculator does have a few constraints for what inputs
it can handle. The calculator can only handle inputted operand
with values between -128 and 127. Also, the calculator cannot
handle an input of zero or inputs that will result in an answer
of zero. Additionally, when inputting a negative number, it
must be entered in as a three digit number (e.g. -15 should be
entered as -015).

CONCLUSIONS

The math unit of the calculator was created and simulated
successfully. The keyboard input into the calculator and the
resulting output onto the Nexys board were also successfully
designed. Some of the code did have errors at first but they
were resolved so that the calculator functioned properly.

It was more challenging than expected to design the input
and output components. Many different designs were created
before the functioning final one was discovered.

After the data path circuit design was selected, there was
some challenge with figuring out how the FSM needed to
function. These challenges were overcome by drawing a box
to represent the FSM that had arrows pointing at or away from
the box for every input and output. A version of this box is
part of the block diagram in Figure 1.

The states were then defined and listed in Table 2, along
with notes that showed which conditions would cause errors.
An algorithmic state machine was then made with the aid of
the box drawing and the state definitions in Table 2. Writing
the code for the FSM was simple after that and required little
troubleshooting.

Overall, after working together as a team and solving
problems systematically, the input, math unit, output, and
FSM were able to be designed successfully to create an eight-
bit calculator.

Table 2. State Definitions

State Description Notes

S1 Receive Operand A

S2 Save Operand A
We'll be stuck in S2

if Operand A is 0

S3

Display Operand A on

7Seg; Receive Operator,

Save Operator

S4 Receive Operand B

S5 Save Operand B
We'll be stuck in S5

if Operand B is 0

S6

Display Operand B on

7Seg; Receive Calculate

Command

S7
Execute Math Operation,

Convert Output to BCD

We'll be stuck in S7

if Result R is 0

S8 Display Output on 7Seg

Figure 1. Block Diagram of 8-Bit Calculator

Figure 2. Vivado’s Block Diagram of

8-Bit Calculator

REFERENCES

[1] D. Llamocca “VHDL Coding for FPGAs,” Reconfigurable Computing
Research Laboratory,
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

