
1

Traffic Light controller

ECE 2700 fall 2018

Austin Berger, Tyler Kavanagh, Remington Davids, Santiago Michel)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

E-mails: AustinBerger@okland.edu, Tdkavanagh@oakland.edu, Remingtondavids@oakland.edu,
Svillarrealmich@oakland.edu

Abstract—The purpose of this project is to model a traffic
light controller for a four-way intersection using the
Nexys A7 FPGA Board that we used to control LEDs that
are on a breadboard to represent the traffic lights. Which
gave us a real life example of how a digital system works.
VHDL was used to code the Nexys A7 FPGA board which
control the LED lights. The VHDL code will control the
timing of when the traffic lights change color. A finite
state machine was used to control the color of the LEDs
based on a timer and switch. While doing this project one
of the major findings was that it was difficult to get the
LED lights to all work at once and display the same color.
The best way to do this project is to first come up with the
pattern of the traffic lights which we did using a state
table. Then the second part would be to figure out how to
translate that pattern into VHDL code that can be
implemented on the FPGA. Then the third part is to set
up the hardware and bug out the issues. The traffic light
is a very interesting final project because it gives us a
better understanding on how traffic light works.

I. INTRODUCTION

Traffic lights play an important role in keeping drivers safe
and getting them to their destinations in a timely fashion. Most
know the basics when it comes to traffic lights, but behind the
scenes there is often a lot more than meets the eye. When
designing an intersection, engineers need to determine the
amount of time each light stays a certain color based on
numerous factors. Does one road have much more traffic than
the other? Perhaps having a longer green light for that road is
appropriate. Do certain road conditions such as a steep decline
require a greater stopping distance? A longer yellow light may
be in order. These are just some of the many factors at play
when a traffic system is being implemented. The intention of
this project was for our group to explore a real-life example
that had to with digital logic and we picked the traffic light
controller. The most challenging part of this project was using
the counter and fsm to control the lights and getting them to
display the same color for the same amount of time. The things
we learn during this project that was not taught in class were
how to use the pmod ports which we used to link our LEDS

to the Nexys A7 FPGA board. We also used a counter and fsm
which we learn in class, so we knew how to use them. We also
added a manual sensor into our VHDL code to act like a real
sensor. Which when the sensor sees a car it would change the
light for the traffic coming and we did this manual for a better
demonstration. Also with a sensor in our traffic light it makes
traffic flow more efficiently.

II. METHODOLOGY

This is the body of your report. Here you explain how you
designed your project.

A. State table

 The first part we needed to figure out when doing this
project was how we were going to design our project and
how we were going to change the lights. We did this by
creating a state table to demonstrate what type of color
signal the road would be getting. which in this case we used
green, yellow, and red for the colors? The state table also
gave us a better understanding of how many states we
would need. After it reaches state six it stops until our
manual switch is switched we did this to represent a sensor
that would make traffic flow more efficiently.

North/south East/west State
R Y G R Y G
0 0 1 1 0 0 S1
0 1 0 1 0 0 S2
1 0 0 1 0 0 S3
1 0 0 0 0 1 S4
1 0 0 0 1 0 S5
1 0 0 1 0 0 S6

Figure 1: State table for the different states.

B. FSM

 The finite state machine was the key part of the VHDL
code because it let us control the order of state which the
lights change color in. It changes the states based on the
inputs that it receives and controls the time it stays on that

2

state. For instance, if the state is under a green light
condition (s1) one of the lights will change to yellow upon
entering the next state (s2). In our VHDL code we used if
and when statements which controls the state it is in. Which
is shown below in figure 3. For example, the state machine
will say that the green light will run for 30 seconds and after
the 30 seconds then turn to yellow for 10 seconds and
finally red for a minimum for 60 seconds. The fsm is the
main reason why are traffic light changes colors in the order
it does

Figure two: State diagram of FSM

Figure three: Piece of FSM VHDL Code

C. Counter

 The counter was used to demonstrate special traffic light
states. To reach these states the counter was used to
increment each time the FSM would pass a certain state.
Once the FSM reaches a certain value the counter will
automatically change the FSM state and stay there for some
time.

D. Top file

 The top file VHDL code is used to put all the different
types of code and combine them in into one into one file.
The top file and constraint file are the two main file that
connect the VHDL code to the Nexys A7 FPGA board
which allows use the Switches a pmod ports.

E. Hardware

 When our VHDL code was done we programed a Nexys
A7 Artix- 7 100T FPGA board. We then used Arduino
wires to wire the FPGA board to our leds from the JA pmod
port. We used two bread board, 12 LEDS and 12 resistors.
We connected the resistor to the positive side from the
pmod port which gives a logic signal to the LEDS. We then
set up the ground for the pmod port which grounded our
leds. We then used one switch of the FPGA board to
represent a sensor.

III. EXPERIMENTAL SETUP

After the VHDL was completed and working properly we
set up our constraint file so we could wire and connect them
to give them the appropriate logic signal. We used the 6 logic
ports from the JA pmod ports to connect the wires to our
LEDS. This will give them the logic signal that the need for
them to change colors all at once and at the right time. After
we made sure the program was working correctly with our
leds. We created a testbench to show our inputs and how is
cycles through the states shown below in figure four.

Figure four: Timing Diagram

IV. RESULTS

The first time that the bitstream was uploaded to the FPGA
the cycle of the traffic lights was too fast, it was discovered
that the counter used in the system was not counting full
seconds, to fix this more bits were added to the counter to
account for the 100 MHz signal. The current code and
hardware setup works as intended, the traffic lights for the
main road are green unless a car needs to cross on the
secondary road, if this occurs the lights on the main road will
switch to yellow then red and after a few seconds the traffic
lights on the secondary road will turn green, and after all cars
in the secondary road have crossed the system goes back to
the original state. A picture below shows the functioning
traffic controller system.

3

Figure five: Traffic light

CONCLUSIONS

The biggest takeaway from this experiment for our team
was how a clock coincides with a Finite state machine to
change multiple states of a traffic light. The most intricate part
of this lab was to work out the bugs within our code in the
Xilinx software. This experiment taught us how to wire the
output pins from the Nexys A7 Artix-7 100T FPGA board,
and then relay them through multiple wires to a breadboard.
Being that we never really worked with the pmod output pins
on the FPGA board became a bit of a struggle for us. Future
experiments dealing with a traffic light controller can be made
more user-friendly and have a better aspect of what these
traffic lights do daily. We could have added an Emergency
detection system for when emergency vehicles are coming or
even make a backup system where all the lights would change
to blinking red if there was a power outage or system issue for
to show a better aspect of what real traffic lights would do in
these cases as improvements to our project. Overall, we built
a functioning traffic system controller and learn how digital
design makes a big impact on a functioning traffic light
controller.

REFERENCES

[1] Llamocca, Daniel. VHDL Coding for FPGAs,

www.secs.oakland.edu/~llamocca/VHDLforF PGAs.html
[2] Nexys A7 Reference Manual. (n.d.). Retrieved from

https://reference.digilentinc.com/reference/programmable-
logic/nexys-a7/reference-

4

.

