
Traffic Light Controller

Authors: Kyle Alspach, Ryan Kelly

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: kalspach@oakland.edu, ryankelly@oakland.edu

Abstract— The purpose of this project is to implement the

student’s current understanding of VHDL and apply it to

create a simple traffic light controller. The controller will have

two modes, day and night, to simulate an actual four way

intersection seen in real life. Through the implementation of

processes such as counters, and finite state machines, the

desired simulation of a four way traffic light will be achieved.

I. INTRODUCTION

 Traffic lights serve an important purpose in

everyday life. With the most popular form of transportation

being automobiles, traffic lights are vital in order to keep

traffic flowing. The goal of this system is to ensure that

traffic moves quickly and safely as to prevent backups.

Additionally, traffic lights need to be able to adapt to

changes in the behavior of traffic. For instance, there is

generally less traffic at night compared to the daytime. As a

result of this, the controller needs to adapt to keep traffic

moving at a busy intersection. Many of the topics learned in

class were implemented for this project.

II. METHODOLOGY

 The goal of this project was achieved through the

underlying design. In order to keep time of the traffic lights,

each light needs to stay lit for an exact amount of seconds to

allow motorists enough time to clear an intersection. The

counters are used to determine how many seconds have

elapsed for each green, yellow and red light. These counters

are a modified version of Prof. Llamocca's [1]. In order to

control the switching of each color of the traffic light, a finite

state machine was built for each mode. This controlled the

state of each traffic light to prevent lights from changing at

will. This will read from each counter depending on the

current state and move to the next one once each counter has

reached its limit. For the implementation of both day and

night modes, five counters were needed and two finite state

machines, one finite state machine is used to coordinate the

day time mode and, the other is used to coordinate the night

time mode.

 Once the main system was achieved we

implemented a multiplexor controlled by a switch that turns

the default daytime mode off, and turns on the night time

mode. The night mode will act like any other night time

traffic lights and flash yellow for the busier street, and flash

red for the slower streets. The block diagram of the overall

data path is shown in Figure 1.

Figure 1 - Block Diagram

 The most important part of the design is the finite

state machines. They control how the lights are displayed

and which counters are enabled. The day mode finite state

machine includes six different states. Each state includes a

six bit output for the LED display, an enable for the current

counter and an asynchronous clear to clear the previous

counter.

 The first state demonstrates a green light being on

for one intersection, and a red light being on for the other

intersection. The state machine then looks at the output from

the green light counter which is set for thirteen seconds in

order to determine whether or not to change state. Since

technically these counters are pulse generators, once the

counter reaches 13 seconds, a signal is sent back to the FSM

enabling it to move onto state two, which switches off the

green light and turns on the yellow light while the red light

from state one remains on. The FSM then goes through the

same process as before for the yellow light which runs for

four seconds. Finally after state two, the current state is

moved into state three where both red lights are on. This

state lasts for one second and then the process cycles over

again only this time with the opposite lights to simulate

changing of the direction of allowed traffic. The machine

repeats the same process for the different direction then

mailto:kalspach@oakland.edu

ultimately goes back to state one. Figure 2 is a diagram of

this algorithmic state machine.

Figure 2 – Day Mode ASM State Diagram

 In a typical night time operation of a traffic light, a

main road has a blinking yellow and a side road will have a

blinking red. A blinking yellow allows for all traffic to

proceed through the intersection while a blinking red

requires you to stop. This FSM is used to create a blinking

action of two lights with the use of only two states. In state

one, none of the lights are on, and in state two one yellow

light, and one red light is turned on. Two counters were used

in the same fashion of the day time FSM but the output of

the lights were configured in a way to simulate the blinking

one would find at an actual intersection at night. Figure 3

shown below represents this algorithmic state machine.

Figure 3 – Night Mode ASM State Diagram

III. EXPERIMENTAL SETUP

 Now that the method of how the traffic light

controller has been laid out, the next step was to build it

using VHDL in Vivado. The final code used a top level

design to port map all of the counters and FSM's to connect

each component, with the counters using a generic map to

manipulate the counters to change how man seconds each

ran. Once all of the components had been laid out and

connected, the circuit was simulated to verify the desired

result.

 The simulation however had some issues when ran.

Typically, simulations are run for very short periods of

times which requires little memory. When an attempt to run

a simulation with something with a lot of time, it causes too

much memory to run or a long time. In order to truly test

this, the circuit had to be programmed to the Nexys A7 and

tested on the breadboard to see if it function properly or not.

 Since most of the testing was required to take place

on the external peripheral, a breadboard was hooked up with

some wires and LED's. This required the use of 12 LED’s,

12 220 ohm resistors. Only six of lights were hooked up

through the Jmod headers of the Nexys A7 board but the

other six were connected in parallel to bridge of their

connection. Six of the LED’s were used to simulate a

North/South road and the other six were used to simulate an

East/West road. Switch 0 was connected to the multiplexor

to switch between day and night mode and the CPU_Reset

was connected to resetn of the circuit.

IV. RESULTS

 Overall, the results ended up being what was

originally desired when this project started after several

circuit designs and different testing methods. State one runs

for 13 seconds, state two runs for four seconds and state

three runs for one second with states four, five and six

running for the same time respectively. With each state

change, each light changes with each corresponding state as

well. Night Mode was implemented similarly with it

effectively achieving a blinking action for the yellow and

red lights.

Figure 4 – Results

CONCLUSIONS

 This project allowed the team to experience what

it is like to be tasked with a real world problem and apply

digital design knowledge and solve it. While it seems as

though if traffic lights have all been figured out by now,

there are still issues and improvements out there which

the team experienced when going through this project.

 Being able to go through the process of

designing a digital system and going through different

iterations of each design to achieve a final one really

opens the eyes of what it is like to do design like this for a

living. Experiencing firsthand how initial designs can be

changed so much by the end gave the team a lot of

knowledge and real world experience.

 This project also speaks to how much more a

project can be improved by adding more and more. The

main improvement to any traffic light is sensors and while

this project didn't use any, it would have made it

multitudes better. Sensors can help the flow of traffic and

prevent unnecessary accidents. In the end however, this

project achieved two simple ideas and was implemented

correctly.

REFERENCES

[1] Llamocca, Daniel. VHDL Coding for FPGAs,

 http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

