

Matrix Multiplication using FPGA

List of Authors (Junbang Chen, David Huang, Ethan Postma)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

e-mails: junbangchen@oakland.edu, dhuang2@oakland.edu, ethanpostma@oakland.edu

Abstract​—We attempted to implement a 2x2 and 3x3 matrix
multiplication circuit into an Artix A-7 FPGA. The user will be
able to input numbers into each cell of the input matrix and
the circuit will produce a result.

I. INTRODUCTION
The purpose of this project is to make a circuit capable

of doing 2x2 and 3x3 matrix multiplication using unsigned
numbers. Matrices are rectangular arrays of numbers or
expressions arranged into cells in a certain row and column.

Matrix multiplication seemed like an interesting project
because it wouldn’t be difficult to do in a standard
programming language, even ones without a GUI. However,
implementing the design into an FPGA proved to be a
challenge as our Nexys A7-50T can only handle one
input/output at a time. For our project, we used many
components from class like a finite state machine, decoders,
registers, and a serializer. One thing we used that we had to
do additional research for were the libraries,
“IEEE.std_logic_arith.all” and
“IEEE.std_logic_unsigned.all” which greatly simplified our
code allowing us to do arithmetic operations without
needing to using adder and multiplier circuits.

II. METHODOLOGY

We had to figure out how to design our circuit
architecture before we could start coding our components.
Our setup initially used an 18 to 1 decoder that fed data into
18 registers. The data for those 18 registers would then be
fed into a processing top file to do the mathematical
operations required. Once the product matrix was calculated
it would be fed into a 9 to 1 multiplexer, controlled by the
address bus and display our output to LEDs. Initially we
want to use 18 registers to store data, one cell for each cell
in the 3 by 3 input matrices, A and B. This would have
required us to use a 5-bit address bus to control 18 addresses
with our decoder. We managed to simplify the circuit
significantly by using 9 registers that each stored two data
values, and having two data input buses. This meant that our
address bus would correspond to the same cells in both our

input and output matrices. We also used the IEEE libraries
for arithmetic and unsigned numbers eliminating the need
for adders and multipliers in our circuit. We were also
initially constrained to 4-bit inputs and 8-bit outputs in our
due to the IEEE library for arithmetic. This however would
not work as an input of 15 (1111) into every cell of our
input matrices would result in each cell of our output matrix
having a value of 675 (1010100011), a 10-bit number. To
solve this issue in our code, we changed each input
“XXXX” into ‘0’&”XXXX”, so that the multiplication of
two 5-bit numbers would result in a 10-bit result, accounting
for our worst case scenario.

A. Block Diagram
For our block we have a decoder reading an

address telling it to enable 1 of 9 registers to store all the
possible numbers we may need for 2x2 or 3x3 matrix
multiplication. That decoder is enabled by a write read
switch that writes when wr_rd = ‘1’. Each register stored
two 4-bit data values, one for data A and the other for data
B. Data entry was controlled using a 9-to-1 decoder, with a
4-bit address bus. Two 4-bit numbers, dataA and dataB were
imputed simultaneously. From there we take all the values
stored in the registers and put them into our processing unit
(PU) to handle the arithmetic operations of matrix
multiplication. Our PU had 18 4-bit inputs for each cell of
the input matrices and 9 10-bit outputs for each cell of the
output matrix. The 9-output values were fed into a 9 to 1
MUX controlled by the 4-bit address bus and an enable of
~(wr_rd), so it is enabled when the decoder is disabled and
vice versa.

The output of the MUX, CC, then gets split up into
3 bit signals, CC(3 downto 0), CC(7 downto 4), and
“00”&CC(10 downto 9), and those signals are fed into a
HEX to seven segment serializer that outputs to an LED
display. The serializer is controlled by a finite state machine
that cycles between three states to display only 1 LED seven
segment display. In order to enable 2 by 2 mode, the third
column and third row of each input matrix should be zeros

so then the third column and third row of the output matrix
are also zero.

III. EXPERIMENTAL SETUP

This project was created and programmed in Xilinx
Vivado Webpack 2018.3. The FPGA used for our project
was a Nexys A7-50T and all code is available upon request.
We also used code provided by Dr. Llamocca for the
registers, serializer and finite state machine.

IV. RESULTS

The result of this project was a working matrix
multiplier for both 3 by 3 and 2 by 2 matrices. It would have
been possible to do the circuit without a FSM if the output
was displayed using LEDs. We learned about using IEEE
libraries to simplify our code and learned about some of the
quirks to said libraries. The hardest and most rewarding part
of the project was designing the interface given the limited
amount of both input and output methods.

CONCLUSIONS

Our project went smoothly for the most part and we got
a working circuit. We would only recommend using this
circuit for actual matrix multiplication only to the most
adventurous of masochists. It would be preferable and
simpler to do matrix multiplication using a standard
programming language or even a website with a matrix
calculator as those would allow for the user to put in all the
inputs simultaneously and see all the results at once. Just use
the computer programming the FPGA to do matrix
multiplication. We had ideas of implementing a hardware
switch for 2 by 2 mode, but that would have resulted in
more complex code.

REFERENCES

[1] “Fundamentals of Digital Logic with VHDL Design”

THIRD EDITION, Stephen Brown and Zvonko
Vranesic,Department of Electrical and Computer
Engineering University of Toronto

[2] “Matrix Multiplication.” ​From Wolfram MathWorld​,
mathworld.wolfram.com/MatrixMultiplication.html

[3] Bryan J. Mealy, James T. Mealy, Digital McLogic
Design, Free Range Factory, 2012.

[4] S. Brown, Z. Vranesic, Fundamentals of Digital Logic
with VHDL Design, 3rd ed., McGraw Hill, 2009.

[5] “Standard VHDL Packages,” Standard VHDL
Packages. ​From University of Maryland, Baltimore
County,
https://www.csee.umbc.edu/portal/help/VHDL/stdpkg.h
tml.

