
Simple Binary Calculator

Tod Rocco, Connor Willcock, Scotty Knight, Bradly Pfeiffer

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: trocco@oakland.edu, connorwillcock@oakland.edu, soknight@oakland.edu, bpfeiffer@oakland.edu

Abstract:

The overall goal of this project is to create a

simple binary calculator that adds, subtracts,

multiplies and divides sign and magnitude

binary numbers. Calculators are used on a

daily basis all around the world and have

made problems in math and engineering

significantly more accurate and expedient. We

will elaborate on the major findings,

conclusions and recommendations upon the

completion of the project.

Introduction:

Throughout this document we will cover the

major sections of this project. This includes

how we went about the overall design of the

calculator, each individual component, and

how we put it all together. We also will

include any challenges we faced and how we

went about solving them. This project is

important because it demonstrates how to

create a useful tool we use every day.

This project is very closely incorporated with

what we did in class as the adder, subtractor,

multiplier and divider were all previous labs.

Four bit values were chosen for the two

numeral inputs that the user would enter. The

main topic we had to figure out on our own

was how to handle signed numbers.

Methodology:

Overall Top File:

The overall top file connects all of the major

sections of the project. If both binary values

are positive it goes into the unsigned portion

of the program and if one of the values is

negative it goes into the unsigned portion.

After the multiplexer selects the correct

positive or negative value, the 8-bit number

goes into the decoder. Finally, the output from

the decoder goes into the serializer to display

multiple values on the 7-segment displays.

Unsigned Top File:

The unsigned top file is triggered when both

sign and magnitude values are 0. The

unsigned top file is composed of five files, a

full adder, subtractor, multiplier, and divider.

The full adder is a simple adder that adds the

two four bit numbers. If there is a carry out, a

1 is added to the left side of the result. The

program then sign extends the number with

0’s to make the resulting number 8-bits. The

subtractor is very similar to the adder expect

the second input’s logic is flipped and then

added to the first input. We also decided to

make the output value the absolute value. The

multiplier works through a series of port maps

that connect adders to multiply the two binary

numbers. Finally, the divider works by

connecting state machine with 3 registers, a

counter and a full adder. The result of the

multiplier and divider are always positive

because the input numbers are always

positive. The remainder from the divider is

mapped to the overall top file MUX. The

multiplexor is then used to select the adder,

divider, subtractor or multiplier.

Signed Top File:

The signed top file is very similar to the

unsigned top file. The inputs are sent to the

signed top file when either both or one of the

signs of the S&M inputs are 1, meaning it’s a

negative number. The signed top file is

composed of 6 different components: sign and

magnitude converter, adder, subtractor,

multiplier, divider, two's complement

converter, and multiplexor. The inputs first go

into the sign and magnitude to 2’s

complement convertor. If the number is

negative, the convertor works by taking in the

4-bit number, flipping the logic, and then

adding it to 0001. However, if the input

number is positive, it simply outputs the

original number. Finally, the program

concatenates the sign bit onto the left of the

 4-bits. The signed adder works very similar

to the unsigned adder except the program sign

extends the numbers. It then adds the two 8-

bit numbers in 2’s complement and outputs

the result. The subtractor works in a very

similar way except it flips the logic of the

second number. The 8-bit numbers from the

adder and subtractor then go into the 2’s

complement to sign and magnitude convertor.

This convertor works essentially the same as

the past convertor. However, the output

number is always positive and there is no sign

concatenation. For simplicity, the multiplier

and divider are the exact same as the unsigned

top file ones. It is important to note that this

means the output from all of these segments

will be positive. Finally, a multiplexor is used

to select the adder, divider, subtractor or

multiplier.

Signed or Unsigned Multiplexor:

This multiplexor selects the data from the

signed or unsigned top file. The code itself

works by using a simple if statement. The if

statement checks if either SM bit is 1. If they

are both 0, the multiplexor selects the

unsigned data, otherwise, it selects the signed

data. This multiplexor also chooses which

remainder to use for the divider function.

7-Segment Decoder

The main purpose of the decoder is to take the

8-bit input from the previous multiplexor and

convert it into 2 numbers. It also determines if

the output number should be negative. To

determine the 2 output numbers, the program

uses a case statement to select values from 00

to FF and create two 7-bit led variables. For

example the 8-bit number ‘10011010’

translates to 9A. The decoder makes the first

led value for A ‘0001000’ and the second led

value for 9 ‘000100’. The final thing the

decoder determines is if the negative sign

should be applied to the number. The program

works by checking a variety of if statements

and if the number should be negative it makes

the third led variable value ‘1111110’ (-). For

example, if the SM value of A is 1 and the SM

value of B is 0 and the two are multiplied

together, the result should be negative.

Seven Segment Display Serializer:

The serializer makes it possible to utilize

multiple 7 segments on the Nexys A7 board

simultaneously [1]. The board only has

provisions for one set of data to be displayed

on all segments at one time. Our result will

utilize three segments to display the sign and

two hexadecimal digits. This file displays

each segment separately in a rapid fashion so

that the human eye can not tell it is flashing

each segment one after the other [2]. The

program itself utilizes a state machine where

each number is represented in a state value.

Experimental Setup:

The first step of testing this project was to

simulate the programs using the testbench.

We varied each variable to ensure each

combination was working correctly. After the

simulation aspect of the project was

functioning correctly we transition to test on

the board. This project was very simple to test

with the hardware because we only needed the

board. Each input corresponds to a specific

switch on the board and the output is

displayed on the rightmost 7-segment

displays. The simulation and the testing on the

board both worked as expected after multiple

combinations on input values.

Results:

The best results obtained from this experiment

were the simulations. The signed waveform

are included in the page below. Figure 1

represents the signed adder, figure 2

represents the signed subtractor, figure 3

represents the signed multiplier, and figure 4

represents the signed divider. Each waveform

also includes at least one case where both SM

values are 0, representing the unsigned case.

Our results were exactly what was expected

therefore we did not see and unexpected

values.

Conclusions:

The main thing we learned in this project was

how to translate unsigned versions of files to

the signed versions. We also learned how to

combine multiple complex subsystems into

one large system. With more time we could

have improved the project by making the user

interface easier to use. This could be done by

inputting the numbers using a keyboard and

then displaying the result on a serial monitor.

References:

The majority of the code from this project was

derived from previous labs. However, the

serializer and counter were found in the

tutorial website. The links are shown below:

[1]
http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLF

 PGA/ISE/Unit_7/serializer.vhd

[2] http://www.secs.oakland.edu/~llamocca/Courses/ECE495
 /Lab/my_genpulse.vhd

Methodology Diagrams:

Figure 1: Simple Calculator Block Diagram

Figure 2: Sign and Magnitude to 2’s Complement Convertor

Figure 3: 2’s Complement Convertor to Sign and Magnitude

Resulting Waveforms:

Figure 4: Signed Adder Simulation

Figure 5: Signed Subtractor Simulation

Figure 6: Signed Multiplier Simulation

Figure 7: Signed Divider Simulation

