
Clock Timer
Designed in VIVADO using VHDL and Implemented on Nexys 4 DDR FPGA Board

Khanh Nguyen, Etjen Zeka, Abbigail Yaldo, Danish Ibadat

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

E-mails: kknguyen@oakland.edu, etjenzeka@oakland.edu, abigailyaldo@oakland.edu, dibadat@oakland.edu

Abstract - Purpose of this project is to make students

to work as a group to design an electric powered

digital stop-watch with a special function to save four

different time instants. This specific electric-powered

digital stopwatch is going to have start, stop, write,

read and a reset button. This project was built in

Vivado using VHDL and implemented on a Nexys 4

DDR board. However, the major purpose of this

project is to make a stopwatch timer for everyday

use. The components of this final project contains

most fundamental VHDL codes.

I. Introduction

 The purpose of this project is to create a

digital stopwatch using VIVADO to program the

VHDL and Nexys 4 DDR board to implement the

project. This electric-powered digital stopwatch can

count up time and has multiple special functions.

This electric powered digital stopwatch can reset

back to zero by pressing a “reset” button, which its

first special function. The next special function of

this stopwatch is to save four different times instant,

when the user wants to look at the saved time instant

later, would be able to. In addition, this electric-

powered digital stopwatch can display seven

segments and up to eight digits. As a result, the time

range can display from hours to hundredths of a

second. The VHDL code consists of one single finite

state machine, buffers, seven and gates and a single

or gate, eleven different counters varies in functions,

four registers registers four different time instants,

multiplexers to decide which inputs going to watch

destinations, three different types of decoders to

decodes different inputs and outputs, last but not least

two four digit seven segment display to display the

running time and saved time instant. The timing of

the individual seven segment displays required

learning how to have them cascade such that the next

nomination of time would only appear once the

previous ones have elapsed. This project can later be

adapted to use in an actual digital stopwatch.

II. Methodology

Coming up with the idea to create a

stopwatch is not a simple task. Adding the idea of a

lap feature makes the task that much more difficult.

As a group, we had to come together and dissect

various components and how they behaved. To

achieve the desired result of this project our method

consisted of studying previous labs and then taking

that knowledge and integrating it into our idea of a

stopwatch in order to successfully create this

stopwatch. To start we had to understand what a

stopwatch does in its simplest nature, which is to

count. To achieve this task we had to incorporate a 32

bit counter composed of BCD counters in order to

keep track of decimal numbers in binary. These

counters are composed of (0-5) and (0-9), this is to

keep track of time and then later be displayed onto

the seven segment-displays. Once the task of

counting was complete, the question of storing data

came up. In order to keep track of data we needed a

registry, but not just any registry this registry was to

be made up of Dflip-flops. These Dflip-flops were to

be connected to a FSM machine, which was to keep

track of various states in order to store the data only

when select switches are on or off. Once we had a

method of counting and storing data we used an OR

gate in order to have a controlled data path

connecting to a MUX in order to select what data is

to be presented. Now that we have all the data we

asked ourselves how do we display this? This was

achieved by integrating a combination of decoders,

and counters to take data and make it suitable to fit

the seven segments in binary and at the same time

incorporating counters to control what is being shown

at given times.

Finite State Machine

The FSMs main function is to display the

output. There are three different states in this

Design including initial state, count state, and a pause

State. The first state is enabled when the

resetn signal is low. Within this state, the buffer

enables are set so that only the buffer for the

count is enabled, so as to only display the count.

The register enables are also set to the not of

lapEn, which makes lapEn an active-low enable for

the registers, recording the lap when a switch

is toggled up. This state then moves on the next clock

cycle to either one of the two remaining states, where

the main operations take place. The count state is

activated when the go input, in essence connected to

stop_go is 1, in which the stopwatch counts up with

increments of hundredths of seconds. This state also

holds the same values as the initial state did. The

third state, pause, is activated when the go input is 0.

In this third state, all the register enables are set to 0,

and the buffer enables are determined by lapEn.

Finally the FSM checks the laps from 4 down to 1,

making the data in priority, only showing the

latest count when all the lap switches are at 0.

32 Bit Counter

For this 32-bit counter, we have

implemented a combination (0-9) BCD counters and

(0-5) BCD counters. The reason for the combination

of the counters is due to working with time. It takes

60 seconds to keep count of 1 minute; this works the

same with minutes to hours. For the project, we used

a Nexys 4DDR board, which has eight seven-

segment displays. For every seven-segment display,

we used a version of our BCD counters for a total of

eight BCD counters. Each BCD counter is linked

with an (and) gate to keep the clock in sync and

responsible for keeping the count for every individual

seven segment-displays. The role of a BCD counter

is to either keep track of the decimal numbers (0-9)

or (0-5) in binary. Then these values are bussed over

to the MUX to keep the clock running while the

stop_go switch is high or over to the registry’s to

keep track of the various laps that will be saved. The

32 Bit counter is driven by our (ms) counter. This

counter is responsible for taking the board’s natural

100Mhz clock frequency, which comes to 10 ns, and

converting it over to (ms).

Display Department

 Thirty-two to four Multiplexer, seven

segment-decoder, three to one decoder, three to eight

decoder, two blocks of four seven segment displays,

one millisecond and modulo eight counter.

 Combination of eight four bits inputs that

will make up thirty two bits input bus. This thirty-two

bits bus going to thirty-two to four multiplexer, its

function is to select a particular digit to display at a

certain time. In addition, selector line contains three

bits, going from zero to seven. At this point, only the

anode is enabled, that would not make two four seven

segments display to function properly. To make it

work properly, cathode should be connected, so three

to eight decoder should be connected to the cathode

of the two four seven segment displays. Decoders can

enable the necessary digit, and it only can send a

single digit whose position is indicated by the

selected line. Within the two four seven segment

displays, there are decimal points to separate the

hours from minutes and seconds from hundredths of

seconds. In order to enable those decimal points,

three to one decoder has to connect has to send a “1”

on the DP input when position two or six is selected,

to enable the decimal point.

 According to the instruction manual of the

Nexys 4 DDR board, two four seven segment

display’s refresh rate limit has to be between one to

sixteen milliseconds. As a result, each digit’s refresh

rate has to be to one millisecond. Since there are

eights digits in total, so it would take eight

milliseconds for the whole thing to take a single loop.

Eights milliseconds is below ten milliseconds clock

speed of the project. For one millisecond counter,

enable activated and z output connect to Modulo

eight counter, make sure selected line go at a given

speed. The Q output of the Modular eight is then

select line and going to cause the display to light up.

Lap Function/ Register

The lap function was the tweak in the

design to offer the user another function on top of the

general stop, go, and reset ones that are to be

included. The data of the laps was stored in a register

to keep track of a certain count. This is information

was displayed on to the onto the seven segment

display with a write function of a switch or button.

There were four D Flip-Flops used as well as a buffer

enable and register enable within to properly

implement the lap function. Each D Flip-flop output

was inputted into a not gate which also had a register

enable input. All of them, as well as the counter were

inputted into an OR gate which ensured that only one

would be able to output at a time. This output then

led to the MUX to transfer to the seven segment

display.The display function above is to be

implemented to keep track of the

1/100sec,sec,min,hours. This will allow the use of all

the seven segment displays, which is eight in total.

III. Experimental Setup

To properly execute the project, it was

necessary to use the Nexys Artix-7 board as the

output of the results. To configure the board, Vivado

VHDL coding was used and source files were

created. The source files created were the seven

segment, adder, counter, BCD counter, MUX, BCD

counter modulo 6, topfile, testbench. To allow for

correct output of the testbench, a xdc file that sets

constraints is required. Each type of board has a

different xdc file, hence it was necessary to pay very

close attention when selecting the file for this project.

After sources were set up, it became possible to

continue to put the correct inputs and outputs making

sure they contain buses that were needed. The Top

file contained all of the sources within the main one

and was required to have the correct signals and port

mapping. Sources themselves need signals when

needed along with mapping. Finally the test bench

needed to be altered to its correct components. It was

initially thought that the modification would work but

didn’t turn out successful.

IV. Results

Initially, there were issues between the top

file and test bench so no results were outputted to the

Nexys board. Once this issue was resolved, the

program functioned as it was initially intended to.

Near the end of the project, there were a complication

of the code not running correctly for the finite state

machine portion of the code. Through multiple hours

of debugging, the errors were found and replaced

with the right correction. The completed project

outputted the current running time once the go input

(stop_go switch) was enabled. The board was

designed to include hours, minutes, seconds and

milliseconds which were shown onto the 7 segment

display counting up from hundredths of seconds.

These results were the main goal that had been hoped

to achieve when implementing the code onto the

board. The results are unexplainable when the

stop_go switch is on active low. If more than one of

the registers switches in on active high at the same

time, the number outputted is not a correct reflection

of the data. Otherwise, all results are completely

explainable and were as expected. At the very end of

the code, LapEN zero and LapEN four would not be

able to save the time instant due to wrong coding in

register portion, that portion also got correct Lastly,

we faced complications within the 32 bit counter that

essentially not displaying correct output which we

realized it was a simple issue within the MUX which

was resolved

V. Conclusions

It is not as simple to create a digital

stopwatch as one may initially assume. Using the

Nexys board to output results was a more efficient

option than using an arduino board and coding. As

the process of creation continued, more than just

educational knowledge was obtained. Furthermore,

how to work well within a team and how to

efficiently delegate and complete tasks was learned

as well. There were some issues regarding the

connection of the testbench to the top file, but

through the use of knowledge obtained throughout

the semester it was possible to fix those problems. To

differentiate the stopwatch, a lap functions were

added to be able to save up to four different times

while the timer was being run. The creation of the

clock timer assisted in tying together everything that

was learned throughout the duration of the course as

well as through each one of the labs. All prior issues

for the timer were resolved and there are no current

issues that require fixing. There is always room for

improvement and in the case of this timer, a possible

improvement may be to add a microsecond display

into the timer.

VI. References

http://www.secs.oakland.edu/~llamocca/Courses

/F17_ECE2700/FinalProject/Group3_Stopwatch

wlap_presentation.pdf

http://www.secs.oakland.edu/~llamocca/Courses

/F17_ECE2700/FinalProject/Group3_Stopwatch

wlap.pdf

http://www.secs.oakland.edu/~llamocca/VHDLf

orFPGAs.html

https://reference.digilentinc.com/reference/progr

ammable-logic/nexys-4-ddr/reference-manual

http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap_presentation.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/Courses/F17_ECE2700/FinalProject/Group3_Stopwatchwlap.pdf
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

