
1

FPGA Based Tic-Tac-Toe Game

with VGA Output and AI Single Player

Matthew Button, Chris Lair, Kacper Wojtowicz

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

mcbutton@oakland.edu, kwojtowicz@oakland.edu, lair@oakland.edu

A tic-tac-toe game using a single 16-button keypad as input

interface for both players and VGA output to display board

and pieces. Also included is a single player switch that can

be flipped at any time to transfer control from the second

player to an AI player.

I. INTRODUCTION

Tic-tac-toe is a simple yet universally known game, so the
implementation of such a simple problem-set in hardware
seemed like a fair challenge. The project includes so much of
what was covered in ECE 2700, the components include,
LUT’s, multiplexors, registers, shift registers, adders, a finite
state machine, and counters, truly the full gamut of class
concepts. The VGA portion of the design did require some
additional independent effort, and the driver is not borrowed
from the course website but designed by itself. The base two
player version was completed early which motivated us to add
the additional single player components. This AI portion
involved looking into the Min/Max Algorithm and its
implications for a tic tac toe game and then transferring that
concept into something ingestible by VHDL. While the
purpose of the device is entertainment, we had to wade into
the nuances of tic-tac-toe strategy and the challenges of
modular design to build the system.

II. METHODOLOGY

The system was devised in layers that built upon each
other to form the final product. First, we designed the Key
Input then the Game Memory, the Turn Processor, the Win
Processor, the VGA Display, and finally the AI for the game.
The following details each major component of the game
highlighting design features and explaining processes.
Component names are deliberately bolded and match names
found in the attached project code.

A. Keypad Input

The “Digilent Pmod KYPD: 16-button Keypad” is utilized

for user input. The keypad inputs can be read by activating a
column of the keypad at each clock tick and reading the
returned row value to know which key is pressed. Our keypad
decoder for this keypad relies heavily on the one provided by
its manufacturer Diligent [1]. However, this code was

condensed because we only utilize the upper left 3 by 3 of the
keypad, and the ‘D’ key for asynchronous reset. The decoder
output is 5 bits, the first designates reset and the remaining 4
represent the cell number of a corresponding tic-tac-toe move.
A full top diagram starting with the keypad decoder and
including all other system components is shown below:

B. Game Memory

The game memory consists of nine 4-bit registers. These

registers numbered 0 to 8 represent the empty cells of a tic-

tac-toe grid. Reset sets all these registers to ‘0’. These

registers are all fed the same data input value, either ‘5’ or ‘1’

for ‘X’ or ‘O’ or for the case of

the VGA output “Red” or

“Blue”. Once an address comes

down from the keypad

decoder, it is sent to an empty

check module which takes the

LSB’s of the registers and

verifies that no player has won

and that the desired cell is

empty and playable.

0 1 2

3 4 5

6 7 8

2

Simultaneously, the address is sent to move recorder

multiplexor which activates enable for the desired cell

register. When a register is successfully overwritten a “write

success” signal is sent to the turn processor, and this unit

proceeds to the next turn by alternating the register data input

between ‘1’ and ‘5’. This memory setup prevents playing in

the same cell twice, keeping to the rules of tic-tac-toe, and

furthermore prevents double-playing when a long button hold

could cause an input to be read twice. It also prevents input

immediately after a player win.

C. Turn Processor

The game tracks turns with a single 9-bit right shift

register. Reset zeros out all nine bits. Each time the turn

processor receives a ‘1’ from the write success bit in the

Game Memory, a ‘1’ is added into this shift register. A

multiplexor then determines if the register outputs are an even

number of ones, indicating X’s turn or an odd number of ones

indicating O’s turn. This turn multiplexor then alternates

outputting ‘5’ or ‘1’ to the memory as turns progress. If all

nine of the bits in the register are one this indicates a possible

tie so a special cats bit is output to help in determining a

winner later. The block diagram of the data path from keypad

to memory and turn processing is included below:

D. Win Processor

The system determines a win by adding up the register

values for sets of three registers that form a win. Obviously,

you can win tic-tac-toe with three in a row, column, or

diagonal, and so there are 8 win combinations. Because ‘X’

is represented by ‘5’ then three in a row will mean a sum of

‘15’ and conversely because ‘O’ is represented by ‘1’ a sum

of ‘3’ indicates an ‘O’ win. For each win combination the

system combines two 4-bit adders to add three of the

registers, and then uses two comparators to test if they sum to

‘15’ or ‘3’. Each of the 8 combinations is tested and if any or

multiple result in a win the game halts and a win signal is

output. If no player has won a “no win” signal allows players

to keep placing moves in memory.

Above is a sample board configuration with the sums of

each win combination shown, notice the center column sums

to ‘3’ indicating a win. Also below is the block diagram for

win processing:

6 10 3 10
11

 x O x 11

 O x 6

 x O 6

3

E. VGA Display

The VGA display was the most daunting task of the

project but ended up being the easiest. To obtain a resolution

of 640x480 pixels with an industry standard refresh rate of 60

Hz we utilized timing and display parameters from

TinyVGA.com [2]. The VGA Display includes a pulse

generator which acts as a 25 MHZ clock for the full display.

A main driver uses four behavioral process to shift the

horizontal and vertical position of pixels while also

producing H-Synch and V-Synch signals and turning the

display on when said positions fall into the monitor range.

The current pixel position is then fed to the board painter

which uses a series of elaborate if statements to determine

shapes and colors on the board. These areas are drawn out in

horizontal ribbons first and then vertical positions are divided

out. We utilized this simple driver because tic-tac-toe has a

simple aesthetic. The driver produces a 3 by 3 white grid, and

then within the grid nine small piece can be placed.

Additionally, on the left side a banner appears in the case of

a win or tie to indicate that result. The colors of each part of

the board are defined in a color palette component. This

component draws the zeroth and second bits of each memory

register to determine if and ‘X’ or ‘O’ was played and then

returns a color based on those inputs. Either black for empty,

red for ‘X’, and blue for ‘O’. If the single player switch is on,

the second ‘O’ player switches colors to green to indicate the

AI is playing. There is also a win color component that uses

LUT’s to output the correct color for the left-hand win/tie

banner. The board painter uses these color inputs to output

a 3-bit RGB signal, so we have the potential for eight

stunning colors. The block diagram for the VGA Display

component is pictured below:

F. AI Single Player

The AI portion was complete after the base game was

done. A multiplexor robo-switch controlled by the current

turn and by the single player switch (sw0) swaps between

human and robot players. This switch is inserted between the

decoder and memory for the original game. A component

robo-vision determines a value for a given cell based on the

win combination sums that overlap it. It also uses the final bit

from the memory registers to verify whether a spot is empty.

Occupied cell positions are given a maximum value of 63.

This component implements using two 6-bit adders and eight

comparators. A sample the board configuration is shown

below:

This particular

diagonal board configuration

(on the left) results in the

bordering sums below. Cells 0,

4, and 8 are marked 63 because

they are occupied. The

remaining cells are marked

based on the sum of bordering

win sums that overlap that cell.

For example Cell 2 is marked

11 or 5+1+5.

These cell

values are then

sent to robo-brain

which first uses a

series of

comparators to

find the lowest

value. And then

outputs a 9-bit

vector that

indicates which

cells share the

share this lowest

value. For the

exampled configuration 6 is the lowest cell value, and it is

shared by cells 1, 3, 5, and 7. So the output vector looks like

“010101010”. The bits of this vector are then summed to 4,

this represents the number of equally optimal choices the AI

must select amongst. Because the AI plays as player 2 or O

and ‘O’ is a ‘1’ in memory (rather than a ‘5’) the lowest value

cells indicate optimal moves. By being lowest, that cell is

closer to an O win (which sums to 3) and closer to other O

placements. This simple cell ranking is how the AI selects

moves that are strategic. Robo-state-machine driven by the

clock then examines each of the nine bits of “010101010”, if

it encounters a ‘1’ then that bit’s 4-bit position is appended to

a long 36-bit shift register. After 9 cycles (examining all 9

bits) the state machine outputs a “done” signal and the 36-bit

shift register holds all the optimal moves for that round at its

X

 O

 X

11 5 1
5

1

 63 6 11 5

 6 63 6 1

 11 6 63 5

4

tail end. The robo-state machine then looks at an n-bit robo-

random counter and selects one of the optimal moves based

on the its value. This n-bit counter, actually takes the

aforementioned 4, representing the number of optimal

choices, as its limit. So, while the state machine builds a

queue of optimal choices in the shift register, the counter

counts from 1 to 4 until the “done” state uses this semi-

random counter value to pick a strategic move. This strategic

move value is then sent to a robo-judgement component.

This component first checks the bordering sums for a 2,

indicating a potential O win. If it finds one its plays in that

row, column, or diagonal. Otherwise it checks for a border

sum of 10 indicating a potential X win. It then blocks that

win. This win checking utilizes the border sums with a series

of comparators. It then checks the final bits of the memory

registers to determine which cell in a particular row, column,

or diagonal is unoccupied. Only when the AI cannot win, and

cannot stop a win, does it then utilize the strategic move

computed by the robo-brain. The output of the robo-

judgement is fed to the robo-switch and allows the AI to

play against the human. The block diagram of the AI

component is shown below:

III. EXPERIMENTAL SETUP

All testing was done using Vivado v2019.1. Because the
VGA output doesn’t reveal much about the inner workings of

the system a second top file tic-tac-toe testable was included
in simulation sources to allow use to verify internal processes.
We frequently ran up to the maximum pin count of 110 when
simulating and had to revise the test bench when validating
different components. Modern monitors may switch away
from the VGA input upon a reset but can switched back easily.
As mentioned previously, the “Digilent Pmod KYPD: 16-
button Keypad” is used for input. A standard VGA cable
connects the board to any monitor.

IV. RESULTS

An image showing the working setup in action is shown
below:

Below is another image with the AI switch on showing the
screen more closely, after a tie:

5

V. CONCLUSIONS

A primary takeaway from this project is the complexity

that can be involved even in simple problems. Tic-tac-toe is
not overtly sophisticated but designing a system to implement
it was exceedingly challenging.

The inflexibility of our VGA Driver is something that
could be improved. The driver does not scale well and
measuring out pixel lengths and widths for every board
element is extremely tedious. The project itself allowed us to
fully understand the VGA protocol. We also wish we could
have implemented a running win/loss tracker so players could
assess their tic-tac-toe skill. Another misstep was the AI
algorithm. First, we tried to make it completely asynchronous,
and ended up making the move queue a kind of latch that
changed instantly when the optimal move vector did.
However, this was unreliable and stopped working frequently.
So, we changed the queue process into a state machine, but
then our single “done” state wasn’t long enough so we
extended it to three “done” states. Once we got it functional,
we realized it didn’t perform well because it was biased
against the center and corner cells. Center and corner cells
involve 3 and 4 overlapped win combinations not just 2 like
the side cells which inflates their cell values. To fix this we
arbitrarily subtracted ‘5’ from corner cell rankings and ‘10’
from the center cell rankings. After adjusting the AI performs
much better winning consistently. Although, since the AI uses
a counter to decide between equivalent choices prejudice
toward certain choices arise. Because the counter is frequently
reset to ‘0’ when the number of move choices changes, we

believe there is a bias toward low address cells. Reforming the
selection method with a different technique for randomization
would be preferred. Also, this project highlights the
advantages of parallel arithmetic. All the win sums, and cell
values, and even the lowest value are computed in parallel and
simultaneously. This is very fast and very powerful. Instead
of programming an algorithm for the AI, because of this
parallel nature of the FPGA we could have implemented a
neural net and taught the AI how to win. This next step is
something outside the scope of ECE 2700 but because of the
rigor we employed when designing the project, we feel it is a
step that is not far out of reach.

REFERENCES

[1] Digilent, “Pmod KYPD,” Pmod KYPD

[Reference.Digilentinc]. [Online]. Available:
https://reference.digilentinc.com/reference/pmod/pmo
dkypd/start. [Accessed: 25-Nov-2019]

[2] Tinyvga.com. (2019). VGA Signal 640 x 480 @ 60 Hz
Industry standard timing. [online] Available at:
http://tinyvga.com/vga-timing/640x480@60Hz
[Accessed 25 Nov. 2019].

[3] Diligent, “Nexys A7 Reference Manual,” Nexys A7
Reference Manual [Reference.Digilentinc]. [Online].
Available:
https://reference.digilentinc.com/reference/programma
ble-logic/nexys-a7/reference-manual. [Accessed: 26-
Nov-2019]

