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Abstract—A binary-coded decimal (BCD) to binary converter 

was utilized to add two numbers input from a keyboard.  This 

task was accomplished using VHDL and a Nexys 4 DDR 

FPGA. Data was input in groups of three decimal digits and 

was read using a ps2 interface.  The two three digit numbers 

were appropriately converted and added together so that the 

result could be displayed on the 7-segment displays of the 

FPGA in hexadecimal.  

I. INTRODUCTION 

This report will discuss the individual elements of our 
circuit and how they interact to accomplish the end goal.  A 
BCD to binary converter is very useful since data from a 
keyboard can only feature the numbers 0 through 9.  As a 
user is actively entering data, we need a way to store that 
data and then convert to binary once the user is finished 
entering the entire number.  We cannot accomplish this by 
converting each decimal digit to binary and combining them 
together.  For this reason, we convert each digit to its BCD 
equivalent and convert to binary using a multiplicative 
algorithm.  In short, the motivation for this project is to make 
it easier to take data from a keyboard and perform operations 
on said data. 

To construct the circuit for this project, we utilized 
control circuits (finite state machines) as well as a datapath 
circuit.  These circuits consist of both combinational and 
sequential components.  Making this circuit exposed us to 
the ps2 interface as well as the seven segment serializer, both 
being components discussed in class but not utilized until 
now. 

II. METHODOLOGY 

A. Design Overview 

The most essential part of the design is the multiplicative 
algorithm that converts the 12 digit BCD numbers into 
binary numbers.  This is accomplished first by splitting the 
number up into groups of four (nibbles).  Decimal numbers 0 
through 9 have a BCD value that is equivalent to their binary 
value (shown in Figure 1). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 

 
However, for numbers larger than 9, the BCD equivalent 

is not equal to the binary value and is instead equal to the 
BCD value of the individual digits combined in order.  Each 
nibble effectively represents a number in a decimal place 
value (ones, tens, hundreds, etc.).  An example for the 
decimal number 999 is shown in Figure 2. 

 

Figure 2 

 
Fortunately, VHDL features a variety of libraries.  One of 

these libraries (ieee.std_logic_unsigned.all) allows us to 
perform unsigned operations on binary numbers.  Therefore, 
to convert from BCD to binary, we simply multiply the ones 
place nibble by binary number 1 (01), the tens place nibble 
by binary number 10 (1010), and the hundreds place nibble 
by binary number 100 (1100100) and add the products 
together.  The sum we obtain is the binary equivalent of the 
three-digit decimal number originally entered on the 
keyboard [1]. 

 
 
 
 
 



B. Datapath Circuit 

 
Figure 3 

 
The datapath circuit is depicted in Figure 3 and features a 

ps2keyboard, a scan code to BCD decoder, an address 
counter, random access memory (RAM) that contains 6 
registers and an address decoder, two BCD to binary 
converters, a ten-bit adder, and a seven segment serializer. 

A standard keyboard will send a scan code for the 
particular character being pressed every 100 ms [2].  Once 
the key is released, the keyboard will send a keyup code (F0) 
followed by the scan code once again.  The ps2keyboard 
detects this keyup code and outputs the following scan code.  
The ps2keyboard’s done bit will go high when the scan code 
is output [3]. 

The scan code to BCD decoder takes the output from the 
ps2keyboard and converts it into the appropriate BCD value.  
If the scan code is for a character other than the numbers 0 
through 9, the decoder will generate “0000,” preventing user 
error from affecting our circuit. 

The address counter features enable, clock, and resetn as 
inputs.  Provided that enable and resetn are high, the counter 
will count from “000” to “101,” incrementing by one at each 
clock tick.  This count serves as the address for the RAM.  
Once the count reaches its maximum value of “101,” the 
counter will set its done bit to 1 and reset the count. 

The RAM is made up of six four bit registers and one 
decoder that converts the address input to the RAM into 
enable bits for the registers.  The decoder is controlled by the 
enable for the RAM (controlled by the FSM).  If the enable 
is ‘0,’ the decoder will disable all registers to retain the data 
currently stored.  Otherwise, it will ensure that only one of 
the registers is enabled at any given time.  The RAM’s other 
input, Din, will be stored in the register that is enabled at the 
clock tick.  At this point, each decimal digit that was 
originally input on the keyboard has been converted to BCD 
and stored in its own register.  Before outputting the data, the 
RAM splits the data in half (groups of 12 bits) and outputs it 
on two buses that will feed into the BCD to binary 
converters.  The digits are in the same order as the user input 
them. 

The BCD to binary converters take in the 12 bit BCD 
numbers and convert them to 11 bit binary numbers. The 

eleventh bit is always zero and will be removed when the 
data is passed to the ten-bit adder.  Since BCD is being used, 
the highest number that can be obtained is 999 (a ten-bit 
binary number).  However, VHDL does not know we’re 
using BCD and believes higher numbers can be obtained 
(such as FFF, which will be 11 bits after the conversion).  
The conversion is achieved using the algorithm discussed in 
Part A.  Each converter also has an enable controlled by the 
FSM. 

The ten-bit adder simply takes in the outputs from the 
BCD to binary converters (minus the eleventh bit) and adds 
them together.  The carry in bit will be zero in all cases.  This 
is accomplished by utilizing ten full adders. The output will 
be 11 bits (binary). 

The goal of the serializer is to take the binary sum from 
the adder and display it in hexadecimal on three seven 
segment displays.  Before inputting the sum to the serializer, 
a zero is added in front of the MSB so that the sum can be 
equally divided into groups of four for easy conversion to 
hexadecimal.  Since only one seven segment display can be 
active at once, the serializer must continuously cycle through 
the three displays (enabling one at a time), showing the 
proper number on each display.  Since the cycling process is 
so fast, the user cannot tell that only one display is active at a 
time and all three appear to be on at once.  The serializer 
features two outputs, one that is 8 bits controlling the active 
display, and one that is 7 bits controlling the individual 
segments of a particular display [3]. 

 

C. Control Circuit 

 
 

Figure 4 

The block diagram (featuring the inputs and outputs) and 
state diagram (showing the transitions) for the control circuit 



are displayed in Figures 3 & 4 above.  The finite state 
machine features four states total (S1, S2, S3, and S4).   

Pressing the resetn button will take the user back to S1, 
but should only be used at the very beginning of operation.  
In order to advance to S2, the done bit from the ps2keyboard 
must go high, indicating that the key stroke has been read.  
Otherwise, the circuit will remain in S1, waiting for a key 
stroke. 

In S2, the address counter will be enabled so it can 
increment accordingly.  S2 represents the point when a key 
has been pressed and the data is being converted in 
preparation for storage in memory.  On the following clock 
tick, the circuit will advance to S3 automatically.  S2 exists 
in order to give the circuit enough time to perform the 
conversion before storage. 

In S3, the RAM will be enabled, allowing the current 
data to be stored in the appropriate register based on the 
address generated by the address counter.  From S3, the 
circuit will either go back to S1 and read the next input, or 
advance to S4 if the done bit from the counter is high 
(indicating that the six digits have been read and are 
currently stored in memory). 

S4 will enable the two BCD to binary converters that will 
convert each 12 bit BCD number into its binary equivalent.  
From this point on, the remainder of the circuit is 
combinational and is not affected by the state machine.  To 
repeat the process and input new values, the user must push 
the enter key (taking them back to S1).  Otherwise, the user 
will remain in S4 and the result will continue to be displayed 
on the seven segment displays. 

III. EXPERIMENTAL SETUP 

In order to debug our project, we went through each 
block individually to verify functionality.  This allowed us to 
make small changes and retest to determine the root cause of 
our issue.  This is an effective method because it provided us 
with a step by step procedure to find our issues.  Along the 
way, we were able to rule out various components as being 
the cause of our issue. 

IV. RESULTS 

We successfully achieved our goal of adding two decimal 
numbers input from a keyboard and displaying the result on 
seven segment displays.  In addition, we were able to add 
functionality to the enter key, allowing the user to reset the 
circuit and type in new values to add.  In completing this 
project, we were able to apply a variety of topics learned in 
class.  These topics include finite state machines, ps2 
interface, serializer, decoders, and memory.  In the end, we 

achieved the results we expected, but not without obstacles 
along the way.  After a long debugging process, we were to 
determine that the decoder in our RAM contained a latch that 
would sometimes write unintended data to the memory.  In 
addition, we had a misunderstanding of the ps2keyboard 
code that prevented us from properly obtaining our input 
data. 

Figure 5 displays the simulation results of our BCD to 
binary converter, the main component of our design.  The 
conversion of three different decimal numbers is shown.  
The numbers are 321, 364, and 539. 

 
 

 
Figure 5 

CONCLUSIONS 

While the objective of our project sounds simple in 
theory, it required much more time and effort than we 
expected.  All of our effort paid off in the end since we 
achieved what we set out to do.  Our project is valuable since 
it demonstrates how data taken from a keyboard can be 
stored and utilized in further operations. 

There a few potential improvements that could be made.  
One improvement would be to use sequential logic to 
implement the BCD to binary converter so that it takes a set 
amount of time to complete the conversion.  Another 
improvement would be to allow the user to enter larger 
numbers via the keyboard.  Both would improve the 
versatility of the code as a whole.  Lastly, it may be useful to 
allow the user to toggle the output between decimal and 
hexadecimal depending on their needs. 
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