
BCD to Binary Converter

List of Authors (Robert D’Angelo, Colton Palmer, Joseph Jarbo)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: robertdangelo@oakland.edu, cpalmer@oakland.edu, josephjarbo@oakland.edu

Abstract—A binary-coded decimal (BCD) to binary converter

was utilized to add two numbers input from a keyboard. This

task was accomplished using VHDL and a Nexys 4 DDR

FPGA. Data was input in groups of three decimal digits and

was read using a ps2 interface. The two three digit numbers

were appropriately converted and added together so that the

result could be displayed on the 7-segment displays of the

FPGA in hexadecimal.

I. INTRODUCTION

This report will discuss the individual elements of our
circuit and how they interact to accomplish the end goal. A
BCD to binary converter is very useful since data from a
keyboard can only feature the numbers 0 through 9. As a
user is actively entering data, we need a way to store that
data and then convert to binary once the user is finished
entering the entire number. We cannot accomplish this by
converting each decimal digit to binary and combining them
together. For this reason, we convert each digit to its BCD
equivalent and convert to binary using a multiplicative
algorithm. In short, the motivation for this project is to make
it easier to take data from a keyboard and perform operations
on said data.

To construct the circuit for this project, we utilized
control circuits (finite state machines) as well as a datapath
circuit. These circuits consist of both combinational and
sequential components. Making this circuit exposed us to
the ps2 interface as well as the seven segment serializer, both
being components discussed in class but not utilized until
now.

II. METHODOLOGY

A. Design Overview

The most essential part of the design is the multiplicative
algorithm that converts the 12 digit BCD numbers into
binary numbers. This is accomplished first by splitting the
number up into groups of four (nibbles). Decimal numbers 0
through 9 have a BCD value that is equivalent to their binary
value (shown in Figure 1).

Figure 1

However, for numbers larger than 9, the BCD equivalent

is not equal to the binary value and is instead equal to the
BCD value of the individual digits combined in order. Each
nibble effectively represents a number in a decimal place
value (ones, tens, hundreds, etc.). An example for the
decimal number 999 is shown in Figure 2.

Figure 2

Fortunately, VHDL features a variety of libraries. One of

these libraries (ieee.std_logic_unsigned.all) allows us to
perform unsigned operations on binary numbers. Therefore,
to convert from BCD to binary, we simply multiply the ones
place nibble by binary number 1 (01), the tens place nibble
by binary number 10 (1010), and the hundreds place nibble
by binary number 100 (1100100) and add the products
together. The sum we obtain is the binary equivalent of the
three-digit decimal number originally entered on the
keyboard [1].

B. Datapath Circuit

Figure 3

The datapath circuit is depicted in Figure 3 and features a

ps2keyboard, a scan code to BCD decoder, an address
counter, random access memory (RAM) that contains 6
registers and an address decoder, two BCD to binary
converters, a ten-bit adder, and a seven segment serializer.

A standard keyboard will send a scan code for the
particular character being pressed every 100 ms [2]. Once
the key is released, the keyboard will send a keyup code (F0)
followed by the scan code once again. The ps2keyboard
detects this keyup code and outputs the following scan code.
The ps2keyboard’s done bit will go high when the scan code
is output [3].

The scan code to BCD decoder takes the output from the
ps2keyboard and converts it into the appropriate BCD value.
If the scan code is for a character other than the numbers 0
through 9, the decoder will generate “0000,” preventing user
error from affecting our circuit.

The address counter features enable, clock, and resetn as
inputs. Provided that enable and resetn are high, the counter
will count from “000” to “101,” incrementing by one at each
clock tick. This count serves as the address for the RAM.
Once the count reaches its maximum value of “101,” the
counter will set its done bit to 1 and reset the count.

The RAM is made up of six four bit registers and one
decoder that converts the address input to the RAM into
enable bits for the registers. The decoder is controlled by the
enable for the RAM (controlled by the FSM). If the enable
is ‘0,’ the decoder will disable all registers to retain the data
currently stored. Otherwise, it will ensure that only one of
the registers is enabled at any given time. The RAM’s other
input, Din, will be stored in the register that is enabled at the
clock tick. At this point, each decimal digit that was
originally input on the keyboard has been converted to BCD
and stored in its own register. Before outputting the data, the
RAM splits the data in half (groups of 12 bits) and outputs it
on two buses that will feed into the BCD to binary
converters. The digits are in the same order as the user input
them.

The BCD to binary converters take in the 12 bit BCD
numbers and convert them to 11 bit binary numbers. The

eleventh bit is always zero and will be removed when the
data is passed to the ten-bit adder. Since BCD is being used,
the highest number that can be obtained is 999 (a ten-bit
binary number). However, VHDL does not know we’re
using BCD and believes higher numbers can be obtained
(such as FFF, which will be 11 bits after the conversion).
The conversion is achieved using the algorithm discussed in
Part A. Each converter also has an enable controlled by the
FSM.

The ten-bit adder simply takes in the outputs from the
BCD to binary converters (minus the eleventh bit) and adds
them together. The carry in bit will be zero in all cases. This
is accomplished by utilizing ten full adders. The output will
be 11 bits (binary).

The goal of the serializer is to take the binary sum from
the adder and display it in hexadecimal on three seven
segment displays. Before inputting the sum to the serializer,
a zero is added in front of the MSB so that the sum can be
equally divided into groups of four for easy conversion to
hexadecimal. Since only one seven segment display can be
active at once, the serializer must continuously cycle through
the three displays (enabling one at a time), showing the
proper number on each display. Since the cycling process is
so fast, the user cannot tell that only one display is active at a
time and all three appear to be on at once. The serializer
features two outputs, one that is 8 bits controlling the active
display, and one that is 7 bits controlling the individual
segments of a particular display [3].

C. Control Circuit

Figure 4

The block diagram (featuring the inputs and outputs) and
state diagram (showing the transitions) for the control circuit

are displayed in Figures 3 & 4 above. The finite state
machine features four states total (S1, S2, S3, and S4).

Pressing the resetn button will take the user back to S1,
but should only be used at the very beginning of operation.
In order to advance to S2, the done bit from the ps2keyboard
must go high, indicating that the key stroke has been read.
Otherwise, the circuit will remain in S1, waiting for a key
stroke.

In S2, the address counter will be enabled so it can
increment accordingly. S2 represents the point when a key
has been pressed and the data is being converted in
preparation for storage in memory. On the following clock
tick, the circuit will advance to S3 automatically. S2 exists
in order to give the circuit enough time to perform the
conversion before storage.

In S3, the RAM will be enabled, allowing the current
data to be stored in the appropriate register based on the
address generated by the address counter. From S3, the
circuit will either go back to S1 and read the next input, or
advance to S4 if the done bit from the counter is high
(indicating that the six digits have been read and are
currently stored in memory).

S4 will enable the two BCD to binary converters that will
convert each 12 bit BCD number into its binary equivalent.
From this point on, the remainder of the circuit is
combinational and is not affected by the state machine. To
repeat the process and input new values, the user must push
the enter key (taking them back to S1). Otherwise, the user
will remain in S4 and the result will continue to be displayed
on the seven segment displays.

III. EXPERIMENTAL SETUP

In order to debug our project, we went through each
block individually to verify functionality. This allowed us to
make small changes and retest to determine the root cause of
our issue. This is an effective method because it provided us
with a step by step procedure to find our issues. Along the
way, we were able to rule out various components as being
the cause of our issue.

IV. RESULTS

We successfully achieved our goal of adding two decimal
numbers input from a keyboard and displaying the result on
seven segment displays. In addition, we were able to add
functionality to the enter key, allowing the user to reset the
circuit and type in new values to add. In completing this
project, we were able to apply a variety of topics learned in
class. These topics include finite state machines, ps2
interface, serializer, decoders, and memory. In the end, we

achieved the results we expected, but not without obstacles
along the way. After a long debugging process, we were to
determine that the decoder in our RAM contained a latch that
would sometimes write unintended data to the memory. In
addition, we had a misunderstanding of the ps2keyboard
code that prevented us from properly obtaining our input
data.

Figure 5 displays the simulation results of our BCD to
binary converter, the main component of our design. The
conversion of three different decimal numbers is shown.
The numbers are 321, 364, and 539.

Figure 5

CONCLUSIONS

While the objective of our project sounds simple in
theory, it required much more time and effort than we
expected. All of our effort paid off in the end since we
achieved what we set out to do. Our project is valuable since
it demonstrates how data taken from a keyboard can be
stored and utilized in further operations.

There a few potential improvements that could be made.
One improvement would be to use sequential logic to
implement the BCD to binary converter so that it takes a set
amount of time to complete the conversion. Another
improvement would be to allow the user to enter larger
numbers via the keyboard. Both would improve the
versatility of the code as a whole. Lastly, it may be useful to
allow the user to toggle the output between decimal and
hexadecimal depending on their needs.

REFERENCES

[1] VHDL coding tips and tricks. In: VHDL code for BCD to Binary
conversion. http://vhdlguru.blogspot.com/2015/04/vhdl-code-for-bcd-
to-binary-conversion.html. Accessed 5 Dec 2018

[2] Nexys 4 DDR Reference Manual. In: Using the Oscilloscope
[Reference.Digilentinc].
https://reference.digilentinc.com/reference/programmable-
logic/nexys-4-ddr/reference-manual. Accessed 5 Dec 2018

[3] Llamoocca, Daniel. “VHDL Coding for FPGAs.” VHDL Codng for
FPGAs.
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

