
Rock Paper Scissors

Rachel Pilarowski, Justin Thomson, Marwan Oro

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: rpilarowski@oakland.edu, jnthomson@oakland.edu, Moro@gmail.com

Abstract—Rock Paper Scissors is a popular game played by

people of all ages. The rules are relatively simple to follow: rock

beats scissors, scissors beat paper, and paper beats rock. After

3 seconds, each player picks one of the options and whoever wins

scores a point. This concept has been digitalized using an FPGA

in order to implement the fast-paced game.

I. INTRODUCTION

Rock Paper Scissors is a simple game with simple
mechanics that most people are familiar with and understand.
Because of this, the game makes a good candidate for the
project.

The main control system of the project will be a Finite
State Machine, which was learned about in class. This circuit
will control the current state of the game. The idea is that
whichever player gets to 3 points first wins the game. One
master clock will also be used in order to synchronize each
circuit and give the players a specified amount of time
between each turn.

Though this game does not have any practical applications
or significance, the hope is that it digitalizes a common game
that many people will be able to play.

II. METHODOLOGY

Below, Figure 1 shows the block diagram for the

complete game. Each player has 3 switches with each one

being either rock, paper or scissors. This is how the user

will select which one they want to choose. The output along

with a countdown will be displayed on the different seven-

segment displays. After the countdown has reached zero,

the score will change depending on who won the round.

The game is considered over once a player has reached the

score 3.

Figure 1: The complete block diagram

A. Comparator

The comparator, which is called RPS in the above

diagram, takes the raw input from the switches and from that
it determines which player wins. If either an invalid input was
entered, such as two or more switches being high, or both
players chose the same option, then the component will catch
it and make either “tie” or “invalid” high. If this happens, the
user will see a “-“ as their input and the score will not be
changed. This circuit was done easily in VHDL by assigning
Rock, Paper, and Scissors to an integer value. Then based on
the user’s input, the corresponding integer will be compared
to the other player’s input. The outputs of this circuit go
directly to the FSM. The FSM controls the state of the game.
Therefore, it takes which player won and outputs the score
onto hex-to-seven-segment displays. Because of this, the
players will always have access to the score. The inputs of
the switches are also fed to the multiplexer which controls the
display in order to display what option each player chose.

B. State Machine

The second element to this digital circuit, which controls
a lot of the functionality of the game, is the Finite State
Machine. This state machine takes in the output from the

comparator and a signal from the counter in order to change
states. Below in Figure 2 shows the complete state diagram.

Figure 2: The complete state diagram for the FSM

 As can be seen from the diagram, if player one or player
two scores a point, the state machine moves to the
corresponding state. There are 11 states total. One of those
state represent if player one won and another state to
represent if player 2 won. If either draw or invalid is high,
the state machine will stay on its current state. If player 1 or
player 2 has a score of 3, that means the game is over. The
only way for the game to go back to the first state is if the
reset button is pushed. The output of the state machine is
just the score for both players. The outputs are fed into the
multiplexing display to be displayed to the players
throughout the game.

C. Counter

The counter module in this project is used to determine

several things such as when to compare two players’ moves,

when to check for conditions which determine state

changes, as well as the integer value of the timer. The top

file receives input from the 100MHz clock in the Nexys 4

and uses this clock input to count to values which

correspond to the length of time we wish to count for. This

counter helped to ensure that the relevant processes were

triggered when needed, and remained idle when not in use.

Using a counter also allowed us to have the ability to

multiplex several seven segment displays at once, which

overall made the game more user friendly.

D. Multiplexing Display

The seven-segment display multiplexor is a module

which was used to determine when individual seven

segments displays should be enabled, and what should be

displayed on them when they are enabled. This component

allowed us to give the user more feedback regarding the

state of the game and made the game much easier for the

player to recognize what was going on. This component

primarily processes what to display when the timer is

counting, and then what to display after the players’ moves

are compared and a winner is declared.

III. EXPERIMENTAL SETUP

In order to test the functionality of the game, the behavior
simulation was used as well as the Nexys board. A test bench
was created in order to test the functionality of the state
machine. Different test cases were used to make sure the state
machine can handle all different cases. A tie was given, an
invalid input was given as well as normal plays to make sure
that it increases the score correctly. As for the counting
module and the display, different bitstreams were generated
with changes to the code until it worked. This was mostly trial
and error based. Once the final code was programmed onto
the board, it was given to players to test to make sure no
problems or issues came up.

IV. RESULTS

In the end, a working game of Rock, Paper, Scissors was
created. The board would display a 3-2-1 countdown at the
beginning of each round and there would be a 2 second buffer
time to show the changed score. All outputs were shown
correctly on the seven-segment displays as well. Rock was
shown with “r’, “S” for scissors, “P” for paper and “-“ for
invalid. Once the game was over, the clock continued to count
down and inputs were still displayed to the user, however, the
score was not changed as a player had already won.

 A majority of the architecture for this game was
based on topics that were discussed in class. For example, the
finite state machine was stressed in class and the methodology
for creating one was followed. However, topics that were not
discussed in class were also used. For example, the RPS
comparator could have been done with Boolean expressions
and truth tables, however, it was found to be much easier to
work with integers instead. Also, it was determined that using
more than one clock in the system is a poor design because of
clock shift and the clock shift propagation.

All results were expected. Even as the game was
developed and resulted in something that was not expected, a
reason was always discovered. For example, before the
multiplexing display worked correctly, the outputs would be
shown to the board but not bright and they would almost blink
very quickly. We found that this was due to the speed of the
clock and the amount of time that the multiplexor would
display each output. Therefore, these times were adjusted in
order to make the display work correctly.

CONCLUSIONS

This project proved that Finite State Machines are
powerful and almost essential in any digital circuit. It also
proved that even the simplest concepts, like a game that you
can play with your hands, needs to be carefully planned. If
any improvement were to be made to this game, one would be
to stop displaying the count down and the user inputs once the
game is over. Then, once the reset button is clicked, continue
displaying everything. Another design improvement could be
to use something other than switches such as buttons. This

would make it easier for the players to be more discrete with
their choices.

