

Simple Calculator
ECE 2700 - Digital Logic Design Final Project Paper

List of Authors (Benley Mathew, Matthew Stopyak, Matthew Wagner)

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
e-mails: bpmathew@oakland.edu, matthewstopyak@oakland.edu,

matthewwagner@oakland.edu

ABSTRACT

This project demonstrates how users can use two eight-bit unsigned integer
numbers for the four main operations of math, which are addition, subtraction,
multiplication and division. While this concept sounds simple in nature the actual task of
implementing this is complex and can be confusing. The actual math of it was easy to
understand and implement, while the input and output mapping and control was more
challenging. We came to the conclusion that an 8 bit calculator is not very useful but
after the heavy lifting, implementing the calculator states and I/O integration, it could
easily be expanded to accomplish larger more useful tasks.

I. INTRODUCTION
For this project, a simple

calculator was created. The motivation
of this project was that the main math
operations were created in the labs of
this course. Other main components
were a BCD to Binary converter and a
seven segment display. Some other
components also include registers to
store the data values of the two
numbers. What we learned from this
project is to clear variables in the
sensitivity of the process. Another thing
that we had to learn on our own was
how to converter BCD to Binary and
Binary to BCD. This method is called
Double-Dabble, where you convert
numbers from Binary to BCD and vise
versa. We also learned how to
troubleshoot error messages from our
project. This project can be used for any
person who needs to use a calculator
for simple math, such as elementary
school students who are just starting to
learn basic mathematics.

II. METHODOLOGY

A. Inputs and Outputs

The first parts of this project is
the input and output values. The input
values’ range is determined by the
number of bits this calculator is built for.
Since the decision of this calculator is
eight-bit unsigned integer numbers, the
range for the inputs is from 0 to 255
binary. Furthermore, since we are using
a 4x4 Keypad, it is further limited to the
range, 0 to 99. Once the range was

decided, the next step was to figure out
how many input values that will be used.
To avoid complex calculations, two
numbers would be enough. These
values would then be converted from
BCD numbers into Binary.

Figure 1: 4x4 Keypad Schematic [2]

After the numbers go through the

operations, the results will be converted
back from Binary to BCD and will be
outputted onto a seven segment display.
For division, if the number has a
remainder, the remainder will be shown
on segments 3 and 4 of the
seven-segment display. Additionally, for
the seven-segment display to work with
the multiple digits, we had to create a
multiplexer that would select each digit
one at a time and display the correct
value.

For a static system the human

can not discern rates above 30Hz so we
arbitrarily selected a value of 40kHz for
this scan cycle related to the operation
of the seven segment display.

Figure 2: Seven Segment Display [1]

Additionally, leds 15 through 12

were programmed to display the state of
the calculator. This helped immensely
when troubleshooting and debugging
the systems.Led 0 is the “carry out” of
the adder/subtractor circuit and led 1 is
the “overflow” from this same circuit.
Blue led 17 is programmed to come on
whenever a button is pressed on the
4x4 keypad.

B. Operations

The four mathematical operations
that were programmed were addition,
subtraction, multiplication and division.

The addition operation was
created from a lab from the course and
was modified to accommodate eight bit
unsigned numbers.

The subtraction operation was
based of the addition, the “addsub” input
is set to a one enabling the subtraction
function of this circuit.

The multiplication operation was

also created from a lab from the course
and was modified to accommodate eight
bit unsigned numbers.

Figure 3: State Diagram of the

Calculator

The division operation was
created from a lab from the course and
was modified to accommodate eight bit
unsigned numbers with an LED system
to display the remainder.

All of these operations will be
connected to the operational keys on
the keypad. The operations will be
executed to the two inputs once the
equal key is pressed.

To control the flow of data

through the calculator, we implemented
a four position finite state machine. This

State 1 is the initialize state in

which the calculator is waiting for its first
input value. Upon receiving the first
numeric value, the calculator moves to
State 2. In State 2, the calculator is
collecting the first numeric entry for the
seven-segment display. Once an
operation button is pressed, the
calculator moves to State 3, and the first
numeric value is locked into its register.
In State 3, the calculator is collecting the
second numeric entry and displaying
this data on the seven-segment display.
Once the “equals” button is pressed the
calculator moves to State 4 and locks
the second numeric entry into its
register. In State 4, the calculator
displays the value of the selected
function that has been performed on the
numeric inputs. This value will remain
until either the “Clear” or “Reset” buttons
are pressed. At this point the calculator

will move back to State 1 awaiting its
first numeric entry.

III. EXPERIMENTAL SETUP

For this project, we have a

keypad that is used to input the two
values, an operation, and an equal sign.
The model of the keypad is the
PmodKYPD. We also used the NEXYS
4 DDR Board that was purchased for
the class and the Vivado Program used
in the lab. We defined the operations for
the calculator on the keypad as the
following; ‘A’ is addition, ‘B’ is
subtraction, ‘C’ is multiplication, ‘D’ is
division, ‘E’ is equals, and ‘F’ is clear.
For the NEXYS Board, the reset button
will reset the program if pressed and the
seven-segment display to present the
answer to the user. The Vivado Program
is used for our coding for the the
calculator. The expected results will be
that it calculates the answers to what
the user asks of it. Example, 1 + 1 = 2.

For the Vivado Board, these are the
things we used on the board.

1. Reset button just resets the
program

2. LED 15: State 1
3. LED 14: State 2
4. LED 13: State 3
5. LED 12: State 4
6. LED 11: Enable Register A
7. LED 10: Enable Register B
8. LED 9: Enable Register E
9. LED 17 (Blue): Key Press

10.LED 0: Carry Out
11.LED 1: Overflow
12.Seven-Segment:

a. Digit 8: “=” sign
b. Digit 5 and 6: Number

Display
c. Digit 4: “r” for remainder
d. Digit 3: remainder value

IV. RESULTS

Table 1: Calculator Project Test
Results

Operation Data
A

Data
B

Solution

Addition (+)

12 36 48

3 27 30

99 99 98
carryout

Subtraction
(-)

48 12 36

98 8 90

54 52 2

Multiplication
(*)

3 6 18

20 4 80

9 9 81

Division (/)

29 10 2 r9

48 12 4

56 5 11 r1

Link to calculator demo:
https://photos.app.goo.gl/EvsWD4Uwr1
oxDwWv5

In all case the results were as

expected. However, do to the unsigned
nature of our subtraction the results of
the arithmetic, when Data B is greater
than Data A, were not representative of
the true nature of the operation because
the result value is unsigned. As a future
improvement the calculator should be
converted to using 2’s complement
binary arithmetic.

V. CONCLUSIONS

Some issues we faced included
the integration of the keypad, including
signed numbers in our project.

The decoding and button

debouncing of the keypad were
extremely difficult to decode due to the
nature of the 4x4 wiring. It was
especially difficult to determine when the
same button was pressed in successive
order. For each column scan if that
particular row did not have a button
depressed, then it would have have an
intermediate value set to high. If all
column read were high, then no button
was pressed.

The second sticking point when

integrating the components of this
calculator was the shift nature of the
BCD output. For each button press, four
bits had to be shifted into the four least

https://photos.app.goo.gl/EvsWD4Uwr1oxDwWv5
https://photos.app.goo.gl/EvsWD4Uwr1oxDwWv5

significant bits of the appropriate
register. Initially we were trying to use a
“button event” function to accomplish
this task but it wasn’t working. After
some research and reading about VHDL
and Vivado, it seems the “event
function” is specifically reserved for
clock functions which are synchronous
in nature. We were attempting to use
this in an asynchronous manner. This
makes sense since VHDL is a hardware
descriptive language. We then
developed a definite “button press state”
and any change latched a synchronous
clock would mean that a button was
pressed. The register would then shift in
four bits of data.

Potential improvements

1. Using 2’s complement binary
arithmetic

2. Drop the leading zeroes on the
display

3. Institute an “all clear” and clear
function

4. Expand the arithmetic capabilities
to handle a greater number of
bits.

5. Rework the FSM and integration
of coding so it is easier to read

6. Replace the seven segment
display with LCD display for
greater functionality

Overall, this project was much

harder than anticipated. VHDL may look
like a coding language but it is not.
When you forget that it is hardware
descriptive and treat it is a coding

language, the problems you will
encounter with your code will intensify.
This was a good learning experience for
beginners and we are walking away with
some valuable lessons.

REFERENCES

[1] Nexys 4 DDR Reference Manual.
(n.d.). Retrieved from
https://reference.digilentinc.com/referen
ce/programmable-logic/nexys-4-ddr/refe
rence-manual
[2] Pmod KYPD. (n.d.). Retrieved
from
https://reference.digilentinc.com/referen
ce/pmod/pmodkypd/start

