
ASCII LED Matching Game

List of Authors (Tim Pietrzyk, Dylan Powell, Nick Schwartz, Brandon Troppens)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: twpietrzyk@oakland.edu, dmpowell@oakland.edu, ndschwartz@oakland.edu, bjtroppens@oakland.edu

The project is a ASCII LED matching game. The goal

of the game is for the player to press a key on the

keyboard that corresponds to the displayed ASCII code.

Each correct match rewards the player a point.

I. INTRODUCTION

The project’s scope includes the design and
implementation of a matching game. The game utilizes
ASCII code represented in binary form as seen by the
user on LEDS. The Nexys4 DDR Board was used to
display both the LEDs, as well as the seven segment
displays. The seven segment displays consisted of a
timer that counts up to sixty seconds, and the score that
increments when the user inputs a correct result. The
point of the game is to test the user’s ability on their
knowledge of ASCII code in binary form. The
motivation was for each team member to learn ASCII
code in a fun and entertaining way.

The team learned many different aspects from class

that they implemented in the design of the final project.
For example, the team included many VHDL
architecture code in the design, including multiplexers,
counters, decoders, and finite state machines. The team
also executed their own VHDL codes, including
utilizing a comparator and a PS2 keyboard via USB.

The applications of the team’s project allow players
to further their knowledge of ASCII characters in the
numerical range from 0 to 9 seen in the Nexys 4
datasheet [2]. This also corresponds to the player’s
knowledge of hex symbols.

II. METHODOLOGY

A. Keyboard Data

The keyboard data was one of the main
incorporations in the project. To make it easy for the user
to select a ASCII key character two of the inputs are
clock and data from the keyboard. The team decided to
use only the characters 0-9. At the core the keyboard
circuit data involved three main components. The first
components involved generating a done and 10-bit

output signal. The done signal is the signal generated by
the keyboard to represent the key down press and key up
code. To control the done signal generated a Finite State
Machine (FSM) is used to generate the ASCII data when
a key is pressed and released. To generate this the FSM
had two states. State 1 controlled the done signal and the
data generated by the done signal F0 had to match. The
reason for this is, “When a key is released, an F0 key-up
code is sent, followed by the scan code of the released
key” [2]. After the key release code “F0” and done signal
are sent the FSM enters state 2. In state 2 the signal Ep
sent a logic high to the register when the done signal was
complete by the key lifting. This signal latched the FSM
to the register.

The register component captured the data output from

the FSM attached to the keyboard circuit. By latching

the data sent by the keyboard FSM the ASCII output

can now be presented to the scoring circuit. To test the

circuit the signals were port mapped in a top file and

implemented on the Nexys board. The output of the

ASCII key data was represented by the switch LEDs

on the Nexys board. A diagram for the ASCII data

output was provided by the Nexys 4 DDR datasheet

[2], and is below in (Diagram 1). The entire schematic

of the keyboard data circuit is shown in (Figure 1).

Figure 1: PS2 Keyboard Schematic

B. Scoring Modual

The team’s first application consisted of the portion
of the project that compared the user’s keyboard input
with the currently lit up LED pattern. This LED pattern
was chosen by a multiplexer with preset values that
appeared random by the user. If the user’s input value
matched with the current multiplexer value, then the
comparator would send out a signal to two different
counters. The first counter would output a signal back
to the multiplexer that would act as a select, allowing a
new value to be outputted by the multiplexer.

The second counter would act as the scoring

mechanism for the game. When the player’s input and
the multiplexer’s output match, the counter would
increment by one. The team also included a second
counter in series with the first one that would account
for values in the tens place This second counter would
be activated when the first counter is at nine and the
player inputs a correct value. The first counter’s output
is anded with the output of the comparator. The
comparator checked to see if the values were equal.
Code examples of a comparator were found online in
VHDL [3]. The second counter would increment by
one when both values are high. The schematic for the
scoring and comparator system can be seen below as
(Figure 2)

Figure 2: Scoring and Comparator Schematic

C. Timer Display

The seven segment display portion of the circuit was

designed in the same way as shown in Dr. Llamocca’s

class notes. Simply put, the signals A-H correspond to

the displays A-H in Figure 3. Whatever four-bit value

is placed on the mux pins A-H will be displayed on the

displays A-H. This is accomplished by rapidly

switching which displays are enabled, and rapidly

switching the value displayed. The input multiplexor is

switched synchronously with the anodes of the displays.

Figure 3: Timer Display Schematic

D. Game Clock Controller

The heart of the game clock controller are the 3 mod-

10 counters and the mod-6 counter. These counters

are controlled by the mod-1000000 counter, which

slows down the rightmost counter to 1ns counts. In

order to enable the next counter, it’s necessary to

reach the final count of the current counter. The

exception is when the mod-6 counter reaches its’

final value. At that point, “game end finite state

machine” (Figure 5) will pull “EQ” low, and disable

the counters through the and gates. Simultaneously,

it switches control of the timer display over to itself

through the two channel muxes. The display will

then read “60:00”, which is hard-coded in the FSM.

This indicates that time has expired. The game must

be reset in order for the display to switch back to

counting again. The FSM has five states which are

the initial state, and then four states which check for

the “Zq” of each counter.

Figure 4: Game Clock Controller

 Figure 5: Game End FSM

III. EXPERIMENTAL SETUP

The team used only the Nexys4 DDR and a PS2
Keyboard as the hardware of the project. On the
software side, the team used Vivado VHDL which
consisted of 33 files. A test bench file was created to
simulate and debug. The simulation verified the team’s
anticipated values for what the game should output.
Once the simulation was verified, the team worked to
configure a bit stream to implement the game in real
time.

At first, the team had trouble with the simulation.

Some of these problems were simple syntax errors,
VHDL hierarchy errors, and code bugs that hindered the
team from completing the project. One such problem
was the creation of a random number generator. After
much research, the team deemed that implementing a
random number generator would be too hard to code in
VHDL within the time frame. The team decided to omit
any random number generator code, and decided to use
a simple multiplexer with a number of preset values
ranging from 0 to 9. These values were set up in a
random order so that each increment would go to the

next unexpected value. To the player, this would appear
random, making the game challenging to a new user.

Once the team fixed all of the errors, the team was

able to program the FPGA and further debug the
program for any more errors. The team expected the
game to work perfectly, but it did not. One such problem
in particular was that one of the tens place counter was
not incrementing when it should have. After vigorous
simulation, the team figured that the problem arose from
an error within the if statements inside the architecture
of the counter’s code.

IV. RESULTS

The design successfully counts from 0 to 60 seconds
and the user’s input values are registered form the
keyboard. The design notifies the user when the correct
ASCII key has been pressed, the user will see a 1 get
generated on the scoring seven segment display. Then
the LEDs will change to show the next ASCII 8-bit
output. The cycle starts all over again when the user
selects another key. All inputs and outputs function as
desired, and during the presentation display. A board
layout picture is shown below to indicate what displays
will turn on (Figure 6).

Figure 6: Board Layout Showing Input and Output

Displays

V. CONCLUSIONS

 Integrating the keyboard data, scoring module, timer

display, and game clock controller. The ASCII game

was created. This project reinforced the understanding

of FSMs and generic counters. This was no simple feat,

as figuring out the key data simulated a ‘F0’ signal for

the key code down. Improvements to the design that

could be making different levels include the notification

LED to the user. Thereby drawing more game states to

the user when the time has expired. Making a larger

number generator MUX with more ASCII values can

also be implemented to provide the user with more

questions.

REFERENCES

[1] Llmocca D VHDL Coding for FPGAs. In: VHDL Coding for
FPGAs.

http://www.secs.oakland.edu/~llamocca/vhdlforfpgas.html.
Accessed 2 Nov 2016

[2] Nexys4 DDR FPGA Board Reference Manual. , C ed.,
Pullman, Digilent, 2014. Accessed 29 Nov. 2017.

[3] “VHDL code for 4-Bit magnitude comparator.” All About
FPGA, 9 June 2015, allaboutfpga.com/vhdl-code-4-bit-binary-
comparator/.

