
8086

Simulated 16-bit Intel Microprocessor

Hollinsky, Paul - Kozera, Stefanie

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: phollinsky@oakland.edu, stefaniekozera@oakland.edu

Abstract—Create an homage to the Intel 8086 microprocessor

from 1979 with the Nexys 4 DDR FPGA development board.

We have emulated a portion of the instruction set from the

original processor, these instructions consisting of add, add

with carry, jump, exchange register, the carry flag

instructions, and halt. The emulation of the 8086 offered

insight into the methodology behind a CPU, and because of the

8086’s historical relevance, insight into the architecture of

modern day CPU’s as well.

I. INTRODUCTION

The Intel 8086, despite being a very early microprocessor
in the age of home computers, was quite a complex chip,
with special pipelining and optimization taking place to
ensure performance [1]. The 8088, the 8086’s 8-bit cousin,
was used in IMB’s model 5150 PC, which spiked these
CPU’s popularity. Because of this, all modern-day CPUs in
personal computers are derived from this original
architecture, appropriately named “The x86 Architecture”.
The 8086 was the first in this long line of CPU development
[2].

The goal of this project is to create a high-level
simulation of the 8086. To do this, we have emulated a
portion of the 8086’s instruction set. We then ran
simulations of these processes in action, and eventually
implemented a physical example on the Nexys 4 DDR
FPGA. Our motivation for doing this was our interest in the
inner workings of CPUs, and the 8086 offered excellent
insight into this. We learned about many topics pertaining to
CPU emulation in class. The programming language VHDL
was essential in completing this emulation. We certainly had
to do some digging on our own in order to complete this
project. We did a significant amount of research into the
instruction set of the 8086, and in general how it functions.
The breakdown of our emulation is addressed below.

II. METHODOLOGY

Because we are creating a high-level simulation, and
have the power to run at much higher clock frequencies than
the original hardware if necessary, we are not focused on
pipelining or optimization. Instead, we have two basic
running states, fetch/decode, and execute.

A. Primary State Machine

i. Fetch/Decode State

The fetch/decode state aims to read the entire instruction
into internal registers for later execution. This is not a simple
task, as Intel’s architecture has many flags and within
instructions which change the length of the instruction. Our
code allows for this, and contains a LUT which returns the
length and type of an instruction. See figure 5.

ii. Execute State

The Execute state uses a large multiplexor to execute the
proper instruction according to the decode phase. These
modules would theoretically be all of the 8086’s instruction
set, but in our case, we have only implemented a limited
amount of opcodes, mainly relating to addition. The opcodes
we have implemented are the following:

1. ADD – Adds an immediate value to the register.

Note that this instruction does consider the carry flag
2. ADC – Add with Carry, this adds and immediate

value to the register and includes the carry flag in the
operation. Thus the carry flag is essentially treated
as cin.

3. JMP – An unconditional Jump, will transfer control
to another portion of the program, this allows us to
move to a different instruction, instead of simply
moving through the sequence

4. JZ – A conditional Jump is the zero flag (ZF) is set
to 1

5. JNZ – A conditional Jump if the zero flag (ZF) is set
to 0

6. STC – Sets the carry flag to 1
7. CLC – Sets the carry flag to 0, or in other words,

clears the carry flag
8. CMC – Inverts the carry flag, therefore, if CF = 1,

then CF = 0 and vice versa
9. XCHG – Exchange, this exchanges the values of two

registers, their values will flip flop
10. HLT – This enters the halt state, all execution will

stop until the CPU is reset

Detailed descriptions of all of the original 8086 opcodes

can be found in the Intel 8086 Family User’s Manual. The
created opcodes above are based off of the originals from

mailto:phollinsky@oakland.edu
mailto:stefaniekozera@oakland.edu

this manual [1]. For our purposes, these are the instructions
that can be executed during the execute state. Depending on
what the decode state specifies, one of the following will be
executed. The instruction is skipped if it is invalid.

These two primary states contain most of the

functionality. When actually functioning, the CPU toggles
between these two states, loading an instruction from
memory in the decode state, and then executing the
instruction in the execute state. These two states make up
the bulk of emulation, however there are two other states that
are used.

iii. Halt State

The halt state is entered with the HLT opcode is
executed. When the halt state is entered, all functionality
ceases. In our case, the program then stays put until the reset
button is pressed, at which point the state machine restarts
and functionality resumes as normal.

iv. Reset State

When the reset button is pressed, the reset state is
entered. This sets us back at the beginning of the primary
state machine, and sets all registers and flags back to their
default values. Note that this is not necessarily zero, as not
all registers and flags have a default of zero. From reset the
CPU can then continue into the decode state.

See figure 5 for an illustration of this state machine.

B. Address Segmentation Calculations

The processor works with segmented addresses, 16-bit
addresses with 16-bit segment pointers. These are added to
produce a 20-bit address, allowing for 1MB of addressable
memory. The calculation shifts the segment by 4 bits to the
left and then adds it to the selected address to create a 20-bit
address.

C. Memory Controller

The memory controller connects directly to the 1MB

addressable memory bus on the CPU. In this case, the

memory controller devotes the area from 0x80000 to

0xC0000 to RAM and the remaining area to ROM, as

shown in the following diagram. Simulating this much

RAM was unnecessary and slowed down the simulation, so

we have a mere 64 bytes of RAM being emulated. Any

RAM outside these 64 bytes will not be written to and will

return 0x0000 when read.

Figure 1: System Memory Map

D. ROM

ROM is generated using a NodeJS script which creates a

VHDL case statement returning the values corresponding to

the code. In this way, the ROM functions more like a very

large LUT within the FPGA. The CPU could, however,

execute instructions from the RAM as well, if user

programmability was desired.

E. Instruction Info Module

The instruction info module connects directly into the

main finite state machine. It takes the first two bytes of

instruction from the processor, and combinationally returns

a value for length and the operation defined for that opcode.

This allows the processor to read the correct number of

bytes for the instruction from memory. Again, this works as

a large LUT.

F. Clock Divider Module

The clock divider module is a variable speed clock

generator used for our project. The output from this

generator is either 10MHz or 4Hz and is controller with the

"slow" signal. The generator expects a clock of 100MHz as

an input. The clock speed can be changed on the fly and the

circuit will guarantee no clock pulse is shorter than intended

for maximum stability.

G. Display Module

The display module drives a bank of 8 seven segment

displays at a refresh rate of 240Hz. It runs on the full

100MHz clock and has a self-contained clock divider for the

1.92 kHz necessary to drive all 8 displays at the required

speed. It takes two 16-bit words as inputs and outputs all of

the necessary display signals. The VHDL code generates 8

of the Hex to 7 Segment LUT converters, and then the 1.92

kHz clock is used to switch between outputs.

Figure 2: 7 Segment Display Driver Circuitry

H. Operation: Add Immediate

 The AddImmediate instruction is used to show how

larger instructions would be structured. Currently this

instruction is complete in one clock cycle; however it has a

done flag which is checked by the state machine, so it could

be configured to take multiple clock cycles if desired and

would continue to execute properly, with the main FSM

waiting on its completion. An instruction such as divide

may take several clock cycles. Smaller instructions such as

jump that can be expressed in just a few lines are not

abstracted to their own file, and are executed directly in the

execute state of the main FSM.

Below is a circuit diagram of the top file of this system.

This links all portions of the simulation together, so they

may work in unison.

Figure 3: CPU_Top, a circuit diagram showing the

relationship between all portions of the

emulation

III. EXPERIMENTAL SETUP

Project testing has taken place using GHDL and
GTKWave due to size concerns with the Vivado software
package. GHDL is a VHDL analysis tool, and GTKWave is
a waveform viewer. We used both in the creation of this
program. This setup is cross platform and allows quick
iterative testing.

NASM (The Netwide Assembler) was used to compile a
testbench of assembly code into machine code. Special
padding instructions are used to make sure that the first
instructions fall on the reset vector. The generated file will
be exactly 1MB, and the addresses of bytes in the file will be
identical to the ones built into the ROM. NASM must be set,
in this case, to only use the 8086 instruction set, rather than
later editions used in more modern processors

Vivado was used for the timing simulation, as well as
implementation and generating the bitstream. We then
uploaded the program to the Nexys 4 FPGA development
board using the SD card.

The testbench simply works by simulating CPU_Top in

its entirety and briefly activating resetn. Then, GHDL
allowed us to view all internal signals and watch program
execution occur.

We expected that using these packages we would be able

to simulate a portion of the CPU accurately, and that it would
behave roughly like we expected. We found this to be true.

IV. RESULTS

We discovered that with diligence, it is indeed possible to
simulate a more advanced CPU such as the 8086 on an
FPGA. The logic to do so is often quite complicated, and
with the vast instruction set of the 8086, impossible to
completely implement in our time limit. Despite this, we
were still able to implement a portion of the instruction set,
which demonstrates the general idea how the CPU works.

Figure 4: Picture of the finished simulation

The testbench is excellent for examining various
processor states that you would not be able to see when
watching the processor run on the FPGA.

Below is a picture of the Nexys 4 board running the

emulation. The leftmost four seven segment displays always
displayed the current instruction pointer. The rightmost four
could be set to display either ax or bx. The displays are
switching so quickly that it is impossible for the camera to
capture the values on screen.

CONCLUSIONS

This emulation offered valuable insight into the inner
workings of a rather complicated CPU. We learned through

this process that although CPU’s are incredibly complicated
engineering wise, when broken down they can be
understood, and eventually emulated. To further this project,
we could implement additional opcodes from the 8086’s
original instruction set. Because of the scope of this project,
we were only able to implement a limited amount and the
uses for this CPU were highly limited. With all opcodes
implemented, this emulation could act as a fully functioning
CPU, and would be able to run programs created with the
x86 architecture for the original 8086.

We have interest in adding VGA support to this project.

VGA support would allow us to use an external monitor.
With this, we could write the display code in such a way that
we could see all of the registers at once. The displays were a
limitation with the development board for us. As the project
stands now, we are limited to only seeing a few registers at a
time. This project itself would be very impressive if one
could see all the registers undergo modifications
simultaneously.

As well, if attempting to implement programs meant for

the original 8086, there would likely be compatibility issues
with certain interrupts. Due to the fact that our code is
running on the "bare metal" CPU currently and the system is
not running a BIOS, any code which made use of BIOS
functions would not work until a suitable BIOS ROM was
built.

REFERENCES

[1] Intel Corporation. (1979). Intel 8086: Family User’s Manual. MA:

Intel Corporation.

[2] Edwards, Benj. “Birth of a Standard: The Intel 8086 Microprocessor”
PC World. 16 Jun. 2008, www.pcworld.com. Accessed 7 Dec. 2015.

Figure 5: Primary State Machine in the CPU Emulation

