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Abstract—Create an homage to the Intel 8086 microprocessor 

from 1979 with the Nexys 4 DDR FPGA development board.  

We have emulated a portion of the instruction set from the 

original processor, these instructions consisting of add, add 

with carry, jump, exchange register, the carry flag 

instructions, and halt.   The emulation of the 8086 offered 

insight into the methodology behind a CPU, and because of the 

8086’s historical relevance, insight into the architecture of 

modern day CPU’s as well. 

I. INTRODUCTION 

The Intel 8086, despite being a very early microprocessor 
in the age of home computers, was quite a complex chip, 
with special pipelining and optimization taking place to 
ensure performance [1]. The 8088, the 8086’s 8-bit cousin, 
was used in IMB’s model 5150 PC, which spiked these 
CPU’s popularity.  Because of this, all modern-day CPUs in 
personal computers are derived from this original 
architecture, appropriately named “The x86 Architecture”.  
The 8086 was the first in this long line of CPU development 
[2]. 

The goal of this project is to create a high-level 
simulation of the 8086.  To do this, we have emulated a 
portion of the 8086’s instruction set.  We then ran 
simulations of these processes in action, and eventually 
implemented a physical example on the Nexys 4 DDR 
FPGA.  Our motivation for doing this was our interest in the 
inner workings of CPUs, and the 8086 offered excellent 
insight into this. We learned about many topics pertaining to 
CPU emulation in class. The programming language VHDL 
was essential in completing this emulation. We certainly had 
to do some digging on our own in order to complete this 
project. We did a significant amount of research into the 
instruction set of the 8086, and in general how it functions. 
The breakdown of our emulation is addressed below. 

II. METHODOLOGY 

Because we are creating a high-level simulation, and 
have the power to run at much higher clock frequencies than 
the original hardware if necessary, we are not focused on 
pipelining or optimization. Instead, we have two basic 
running states, fetch/decode, and execute. 

 

A. Primary State Machine 

i. Fetch/Decode State 

The fetch/decode state aims to read the entire instruction 
into internal registers for later execution. This is not a simple 
task, as Intel’s architecture has many flags and within 
instructions which change the length of the instruction.  Our 
code allows for this, and contains a LUT which returns the 
length and type of an instruction. See figure 5. 

ii. Execute State 

The Execute state uses a large multiplexor to execute the 
proper instruction according to the decode phase.  These 
modules would theoretically be all of the 8086’s instruction 
set, but in our case, we have only implemented a limited 
amount of opcodes, mainly relating to addition.  The opcodes 
we have implemented are the following: 

 
1. ADD – Adds an immediate value to the register.  

Note that this instruction does consider the carry flag 
2. ADC – Add with Carry, this adds and immediate 

value to the register and includes the carry flag in the 
operation.  Thus the carry flag is essentially treated 
as cin. 

3. JMP – An unconditional Jump, will transfer control 
to another portion of the program, this allows us to 
move to a different instruction, instead of simply 
moving through the sequence 

4. JZ – A conditional Jump is the zero flag (ZF) is set 
to 1 

5. JNZ – A conditional Jump if the zero flag (ZF) is set 
to 0 

6. STC – Sets the carry flag to 1 
7. CLC – Sets the carry flag to 0, or in other words, 

clears the carry flag  
8. CMC – Inverts the carry flag, therefore, if CF = 1, 

then CF = 0 and vice versa 
9. XCHG – Exchange, this exchanges the values of two 

registers, their values will flip flop 
10. HLT – This enters the halt state, all execution will 

stop until the CPU is reset 
 
Detailed descriptions of all of the original 8086 opcodes 

can be found in the Intel 8086 Family User’s Manual.  The 
created opcodes above are based off of the originals from 
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this manual [1].  For our purposes, these are the instructions 
that can be executed during the execute state.  Depending on 
what the decode state specifies, one of the following will be 
executed. The instruction is skipped if it is invalid. 

 
These two primary states contain most of the 

functionality.  When actually functioning, the CPU toggles 
between these two states, loading an instruction from 
memory in the decode state, and then executing the 
instruction in the execute state.  These two states make up 
the bulk of emulation, however there are two other states that 
are used.   

iii. Halt State 

The halt state is entered with the HLT opcode is 
executed. When the halt state is entered, all functionality 
ceases.  In our case, the program then stays put until the reset 
button is pressed, at which point the state machine restarts 
and functionality resumes as normal.   

iv. Reset State 

When the reset button is pressed, the reset state is 
entered. This sets us back at the beginning of the primary 
state machine, and sets all registers and flags back to their 
default values.  Note that this is not necessarily zero, as not 
all registers and flags have a default of zero. From reset the 
CPU can then continue into the decode state. 

 
See figure 5 for an illustration of this state machine. 
 

B. Address Segmentation Calculations  

The processor works with segmented addresses, 16-bit 
addresses with 16-bit segment pointers. These are added to 
produce a 20-bit address, allowing for 1MB of addressable 
memory. The calculation shifts the segment by 4 bits to the 
left and then adds it to the selected address to create a 20-bit 
address. 

 

C. Memory Controller 

The memory controller connects directly to the 1MB 

addressable memory bus on the CPU. In this case, the 

memory controller devotes the area from 0x80000 to 

0xC0000 to RAM and the remaining area to ROM, as 

shown in the following diagram. Simulating this much 

RAM was unnecessary and slowed down the simulation, so 

we have a mere 64 bytes of RAM being emulated. Any 

RAM outside these 64 bytes will not be written to and will 

return 0x0000 when read. 

 

Figure 1: System Memory Map 

 

 

D. ROM 

ROM is generated using a NodeJS script which creates a 

VHDL case statement returning the values corresponding to 

the code. In this way, the ROM functions more like a very 

large LUT within the FPGA. The CPU could, however, 

execute instructions from the RAM as well, if user 

programmability was desired. 

 

E. Instruction Info Module 

The instruction info module connects directly into the 

main finite state machine. It takes the first two bytes of 

instruction from the processor, and combinationally returns 

a value for length and the operation defined for that opcode. 

This allows the processor to read the correct number of 

bytes for the instruction from memory. Again, this works as 

a large LUT. 

 

F. Clock Divider Module 

The clock divider module is a variable speed clock 

generator used for our project. The output from this 

generator is either 10MHz or 4Hz and is controller with the 

"slow" signal. The generator expects a clock of 100MHz as 

an input. The clock speed can be changed on the fly and the 

circuit will guarantee no clock pulse is shorter than intended 

for maximum stability. 

 

G. Display Module 

The display module drives a bank of 8 seven segment 

displays at a refresh rate of 240Hz. It runs on the full 

100MHz clock and has a self-contained clock divider for the 

1.92 kHz necessary to drive all 8 displays at the required 

speed. It takes two 16-bit words as inputs and outputs all of 

the necessary display signals. The VHDL code generates 8 

of the Hex to 7 Segment LUT converters, and then the 1.92 

kHz clock is used to switch between outputs.  

 

Figure 2: 7 Segment Display Driver Circuitry 

 



H. Operation: Add Immediate 

 The AddImmediate instruction is used to show how 

larger instructions would be structured. Currently this 

instruction is complete in one clock cycle; however it has a 

done flag which is checked by the state machine, so it could 

be configured to take multiple clock cycles if desired and 

would continue to execute properly, with the main FSM 

waiting on its completion. An instruction such as divide 

may take several clock cycles. Smaller instructions such as 

jump that can be expressed in just a few lines are not 

abstracted to their own file, and are executed directly in the 

execute state of the main FSM. 

 

Below is a circuit diagram of the top file of this system. 

This links all portions of the simulation together, so they 

may work in unison. 

 

Figure 3: CPU_Top, a circuit diagram showing the 

relationship between all portions of the 

emulation

 

III. EXPERIMENTAL SETUP 

Project testing has taken place using GHDL and 
GTKWave due to size concerns with the Vivado software 
package.  GHDL is a VHDL analysis tool, and GTKWave is 
a waveform viewer.  We used both in the creation of this 
program.  This setup is cross platform and allows quick 
iterative testing.  
 

NASM (The Netwide Assembler) was used to compile a 
testbench of assembly code into machine code. Special 
padding instructions are used to make sure that the first 
instructions fall on the reset vector. The generated file will 
be exactly 1MB, and the addresses of bytes in the file will be 
identical to the ones built into the ROM.  NASM must be set, 
in this case, to only use the 8086 instruction set, rather than 
later editions used in more modern processors 
 

Vivado was used for the timing simulation, as well as 
implementation and generating the bitstream.  We then 
uploaded the program to the Nexys 4 FPGA development 
board using the SD card. 

 
The testbench simply works by simulating CPU_Top in 

its entirety and briefly activating resetn. Then, GHDL 
allowed us to view all internal signals and watch program 
execution occur.  

 
We expected that using these packages we would be able 

to simulate a portion of the CPU accurately, and that it would 
behave roughly like we expected. We found this to be true. 
 

IV. RESULTS 

We discovered that with diligence, it is indeed possible to 
simulate a more advanced CPU such as the 8086 on an 
FPGA.  The logic to do so is often quite complicated, and 
with the vast instruction set of the 8086, impossible to 
completely implement in our time limit.  Despite this, we 
were still able to implement a portion of the instruction set, 
which demonstrates the general idea how the CPU works.   

Figure 4: Picture of the finished simulation 



The testbench is excellent for examining various 
processor states that you would not be able to see when 
watching the processor run on the FPGA. 

 
Below is a picture of the Nexys 4 board running the 

emulation.  The leftmost four seven segment displays always 
displayed the current instruction pointer. The rightmost four 
could be set to display either ax or bx. The displays are 
switching so quickly that it is impossible for the camera to 
capture the values on screen. 

 

 

CONCLUSIONS 

This emulation offered valuable insight into the inner 
workings of a rather complicated CPU.  We learned through 

this process that although CPU’s are incredibly complicated 
engineering wise, when broken down they can be 
understood, and eventually emulated.  To further this project, 
we could implement additional opcodes from the 8086’s 
original instruction set.  Because of the scope of this project, 
we were only able to implement a limited amount and the 
uses for this CPU were highly limited.  With all opcodes 
implemented, this emulation could act as a fully functioning 
CPU, and would be able to run programs created with the 
x86 architecture for the original 8086.   

 
We have interest in adding VGA support to this project.  

VGA support would allow us to use an external monitor.  
With this, we could write the display code in such a way that 
we could see all of the registers at once.  The displays were a 
limitation with the development board for us.  As the project 
stands now, we are limited to only seeing a few registers at a 
time.  This project itself would be very impressive if one 
could see all the registers undergo modifications 
simultaneously.   

 
As well, if attempting to implement programs meant for 

the original 8086, there would likely be compatibility issues 
with certain interrupts.  Due to the fact that our code is 
running on the "bare metal" CPU currently and the system is 
not running a BIOS, any code which made use of BIOS 
functions would not work until a suitable BIOS ROM was 
built. 
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Figure 5: Primary State Machine in the CPU Emulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


