
Oven Toaster Timer

List of Authors (Eric Hoskins, Manar Dano, Ka

Chai, Umair Tahir)

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mail: erichoskins@oakland.edu ,

manardano@oakland.edu , kchai2@oakland.edu,

utahir@oakland.edu

Abstract—This report is about the change in oven

toaster timer when the temperature is set up in

different degrees. The idea of this project seems

interesting since using Nexxys board as an oven

timer. The idea of the project is to show that the

time start differently depends on different

temperatures are set at the beginning. Also, there

is a LED tells you whether the oven is

overheating. LED shows that the oven

automatically turn on/off itself depends on When

the oven is overheating, the LED will go off. When

the LED is not overheating, LED stays on. The

timer will automatically reset to where it starts

when the time hit 0. On the Nexxys board,

temperature is control using switches 15, 14 and

13 and timer is using switches 11, 12. The enable

switches is 1.

I. INTRODUCTION

We wanted to make a circuit that will count
down the timer of the display.

The circuit could be used in an oven stopwatch
that was our motivation for our final project. The
implications of this project were using the Nexys
board to be the brains of the oven timer. The topics
that we learnt in class are finite state machines,
seven segment display, clock divider, multiplexer 7
to 1 to cover our final project. We learnt multiple
seven segment display, counters and integers on our
own. The applications of our project are controlling
the time for the oven.

 The main purpose of the final project is to test
out the actual timer of the oven using the Nexys
board. Our idea for the project is to show LED light
whether turning on/off if oven overheating. We will
add a switch for the on/off button.

II. METHODOLOGY

The design for our oven display consisted of

several logical blocks strung together in a top file.

To begin this design, first, we started with the

actual display. In class, we had never attempted to

drive multiple digits on the display. This was our

first challenge to overcome. To accomplish this,

we first thought of adding an 8-1 multiplexer. The

output of the multiplexer had the values of each of

the eight digits. This then was fed into the seven-

segment decoder. To control which digit was on

we connected the select line of the multiplexer to

the seven-segment decoder. This allowed the

seven-segment decoder to output the information

to display the digit and the correct position. These

select lines needed to count from 0-7 at a constant

rate. To do this we built a clock divider that

divided the input signal 3 times. It took the form

of a F.S.M. with 8 states. Each clock tick

triggered a transition to the next state.

We made a file that assembled these parts

and input the digits 1-8 to positions 1-8 on the

multiplexer. The result was illegible garbage. The

clock signal was still too fast. This caused the

LEDs to not have time to light up and turn off in

time. To remedy this situation, we created a

counter. This counter simply had an integer X that

was logic high every thousand clock ticks. This

solution worked beautifully. We were now able to

display multiple digits on the NEXYS board at the

same time. The next step was to create a look up

table for the temperature display. This lookup

table had 1 input and 4 outputs. The input was a

3-bit number based on the state of three switches.

The output was four 4-bit numbers. We realized

that since the temperature never exceeded 1000

degrees, that the first output would always be 0.

mailto:erichoskins@oakland.edu
mailto:manardano@oakland.edu
mailto:kchai2@oakland.edu
mailto:utahir@oakland.edu

We kept it to make the system more robust. This

choice made it so that we could modify the look

up table, at a later date, to display temperatures up

to 9999. This larger range makes the project able

to be used in many different applications. We now

had a circuit that would display 8 different

temperatures.

The next step was to design a timer circuit.

We decided to go with times from 30-90 seconds.

We settled on a two-bit input. This left us with the

times 30, 45, 60, and 90. Because 90 was the

largest value, we designed a F.S.M with 90 states.

In retrospect, this may have not been the most

efficient way to accomplish this. However, it

worked very well. The two-bit number from the

switches was input into the timer and used in a

with-select block. We initialized a variable that

was a different state based on the input from the

switches. If the input was 00 for example, the

variable would be S30. This allowed us to utilize

one F.S.M to encompass four separate counts. The

transition process counted down from the value of

the variable to 1. At that point it would return to

the value of the variable. The reset command for

this F.S.M. was also based on the variable. It

would return you to the correct state so if the

timer was set for 60 seconds and the user pressed

reset, the timer would return to 60 seconds.

The last step in this was to hook up a

counter to slow down the clock signal. The

internal clock signal on the board runs at 100Mhz.

This is 100 million ticks per second. To cancel

this out, we made another counter that exported a

1 every time a variable was incremented up to 100

million. This created a signal that oscillated at 1

hz. This signal was used to drive the transition

process of the timer. The timer then exported the

two numbers to the multiplexer. We now had the

entire display created. It could display a

temperature and drive a timer. We felt that this

wasn’t quite enough, so we started to think about

integrating a heating element and a temperature

sensor. The temperature sensor we had exported

very complicated data, so we decided to simulate

a temperature sensor with a simple binary input. A

9-volt battery connected to a voltage divider and a

switch exported a logical high at 3.3 Volts at the

users input. A logical high represented that the

temperature was not hot enough and a logical low

meant that the temperature was too hot. This

signal was connected to the board on one of the

Pmod connectors. This signal was initialized as a

variable in the top file. This signal was ended with

the enable of the timer and drove an LED. This

LED represented the ovens heating element. The

LED would only turn on when the timer was on

and the oven wasn’t hot enough. If the oven was

too hot or the timer was turned off, then the oven

would shut down. This LED was also taken off

board. The Pmod has a 3.3Volt out and a GND.

What we did was took the 3.3 Volts to a resistor,

to a led, to a transistor, and then finally back to

the ground. A wire was connected from the Pmod

to the base of the transistor. The ended signal was

then port mapped to this new wire. This allowed

us to drive an LED based off signal from the

board and from the environment. Overall, we used

the simple blocks we learned how to create in

class to design a fully functioning system.

III. EXPERIMENTAL SETUP

We used the testbench to verify the functioning
our project. We used Vivado 2016.2(VHDL) for the
software and Nexys board for the hardware. The
specific configuration tools that we used is how we
codes in each file separately and we put everything
in top-file. The expected results were when we
input the values, the timer should either start from
30 to 90 depending on the values of n coming in.
The picture below is showing how we setup up

before we run the experiment.

IV. RESULTS

The picture below show the output for the timing

diagram after we putting all the code together.

The result came out as what we expected. We also

tested the Nexsys board to make sure we received

the correct timer when we switching different

temperature.

CONCLUSIONS

We were to test out the oven timer using the look
up table 1, clock divider, multiplexer, seven
segment, decoder, timer, and topfile. We used some
of the codes from previous lab for the project. The
main codes were mainly from the topfile and the
timer. The topfile and the timer are the decision
maker to facilitate and transformation. The main
issues our group remain to solve is temperature
sensor. We could not find out what the issues were
from our codes and we decided to skip that part. If
we have more time, we could have done better for
our project.

REFERENCES

[1] “Signal Assignments in VHDL: with/Select, When/Else and

Case.” Edited by Philippe Faes,Sigasi, 4 July 2011,
insights.sigasi.com/tech/signal-assignments-vhdl-withselect-
whenelse-and-case.html.

