
Logic Master

Jerad Inman, Garrett Bondy, Ryan Peck

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: jdinman@oakland.edu, glbondy@oakland.edu, rpeck@oakland.edu

Abstract-This project was based on the board game

Mastermind. In Mastermind, the master input a

sequence of four colors. The guesser then tries to

guess the sequence that the master selected. Pegs

display whether the guess was correct or not. For

every correct guess in the correct position, a green

peg is displayed. For every correct guess in the

incorrect position, a yellow peg is displayed. Our

project took this idea and digitalised it. The purpose

of our project was to create a simple and fun game

using techniques taught to us in class and lab. We

discovered that creating a comparator is very

complex, and just because a simulation gives you

correct results, it does not mean that the board will

work correctly. In the end, we got the project to work

on the FPGA board. While it is not the most user

friendly game, it still is fun to play and quite hard. If

anyone else wanted to design a similar game, we

would recommend to show the guesser’s previous

guesses, so they have a better chance of guessing the

master’s sequence.

Introduction

This report will cover the design and the application

of our project, Logic Master. The report will contain

a description of each of the modules used within the

project as well as how that component interacts with

the rest of the system. The motivation behind creating

this project was to use our knowledge of VHDL from

the class, and apply it to a game that is both intuitive

and accessible to a user. The game uses many

different topics from the class, including decoders,

encoders, registers, a demux, equality detectors, and a

FSM. Topics that we learned on our own for this

project include the comparator and the pmods of the

board. Logic Master will use the onboard switches of

the FPGA board, external LEDs, a seven segment

display, an external three speed switch, and push

buttons. The push buttons and switches will be used

by the user to input their selections and set the game

mode. The seven segment display is used to display

the user’s choices, and the external LEDs are used to

show the results of the players outputs. The

application of this project is to provide a game that

not only can pass time, but is mentally challenging

and intuitive to play.

Methodology

A. Inputs

The inputs shown above go into two encoders. The

top encoder determines what position the choice is in

by reading 3 signals sent by a 3-speed switch. The

bottom encoder selects which color was chosen based

on the button pressed. The top encoder is a 4-to-2,

and the bottom is a 3-to-3. The template for the

encoders were created using the file from Dr.

Llamoca’s website, [1].

 B. Demux and Registers

The demux follows the encoders. The color encoder

sends its output signal to the input of the demux. The

position encoder is used as the select line. Based on

the select line, the demux then sends the input signal

to the appropriate register. The registers, RA0, RB0,

RC0, and RD0, are for the master sequence. The

register, RA1, RB1, RC1, and RD1, are for the

sequences of the guesses.

 C. FSM

The main function of the FSM is to enable

and disable registers. When in State 1, a ‘Write’

signal is encountered. If ‘Write’ is 1, then the ‘Em’

signal becomes 1. This enable signal goes to an and

gate with the position inputs to enable only one of the

top registers where the signal will be stored. This will

continue until the signal ‘State’ becomes 1.

Once ‘State’ becomes 1, then the FSM goes

to State 2. When in State 2, another ‘Write’ signal is

encountered. If ‘Write’ is 1, then the ‘Eg’ signal

becomes high. This will then be anded to the position

vector to enable one of the the bottom registers. After

all of the registers have stored data, the FSM moves

to an ‘Enter’ variable. If this is 1, then it causes the

‘ELED’ signal to become 1. Finally, if ‘State’ signal

returns to 0, then the FSM returns to State 1.

 D. Comparator

 The main function of the comparator is to

analyze the master sequence and the guess sequence.

The four colors of the master sequence and the four

colors of the guess sequence are sent through equality

detectors to produce 16 internal signals. These

signals are then sent through a sequence of

combinational logic to determine which values are

correct in the correct place, and which are correct in

the wrong place. Due to possibility of repeating

colors, the logic is programmed to prioritize the

correctly placed values and eliminate repeated

misplaced but correct values. This function then

outputs 2 four bit signals, where one indicates correct

value (yellow) and the other indicates correct value

and correct place (green).

 E. Outputs

 The outputs of the comparator represent the

unfiltered signals for the yellow and green led

indicators. Initially, the yellow signal is filtered

through an xor gate to remove unintended yellow

indicators. Now, these 2 signals are send into a

decoder to be converted, combined, and sent to 4

LED output registers. Finally, these registers can be

enabled when in State 2 and ‘Enter’ is pressed. When

enabled, the LED indicators light up in a combination

of 4 yellow or green LEDs based on the guess

validity.

Experimental Setup

In order to test this program we were able to design a

test bench that stores different values and tests

guesses against those values. Some of the basic code

from our test bench can be seen below. The code on

the right is is the master state, as can be seen by st =

‘0’. This is so that the values are saved in the

registers. The code on the left is in the guesser state

and is cycling through a series of guesses. In order to

test the basic program on the board we used the on

board switches instead of the switches attached to the

pmod, and the onboard LEDs instead of the ones we

ultimately connected to the pmod. This allowed us to

verify the code without worrying about possible

issues existing outside of the scope of the board. In

doing this, we were able to find that the program

worked as planned. Then we were able to focus on

implementing the peripherals after the fact.

Results

This project ended up working as we originally

planned, and an image of the timing simulation for

our project can be seen at the end of the report. We

were able to successfully implement the external

portions of the project to use the three speed switch

to select what position we used and the external

LEDs to display the results of the guesser’s choice.

As can be seen in the timing diagram, we were able

to successfully store values to the registers. We then

inserted a guess and saw if the value matched that of

the original input. As also can be seen in the variables

r0 - r3 shown above, a correct guess will yield a ‘1’

in the leftmost bit of the the r variable, and will result

in one of the green LEDs being turned on. A guess

that contains the right color in the wrong place will

yield a ‘1’ in the other bit of the r variable and will

lead to a yellow LED being turned on. Unexpected

results that we initially received were false output

values when testing different sequences. While

guessing our values with the switches and push

buttons, we were experiencing unexpected values at

the output LEDs. We found our problem to be that

the value for one of the variables was being changed

whenever we were switching between the variables

because it was accepting the last pressed value as we

switched from one position to the next. In order to

combat this issue, we included a read write mode to

our FSM, so that the user could see what variable

they assigned to each value without overwriting the

one variable. Another issue of note was that we

created a latch in simulation that did not convert to

hardware, which lead to us not being able to change

the value of the variable using the FGPA board. In

order to resolve this issue we used a register instead

of a latch.

Conclusions

The main take away points from this project is that

we were able to produce a working version of our

game with the peripherals we originally planned to

use. If we were able to expand on this project and had

more time to further develop it, there are several

changes we would implement. The first change we

would make would be to use RGB LED’s for the

output, just because it would simplify the design and

the code is easily capable of running them. Another

change we would make would be to improve the

packaging of the game. We would create a more user

friendly system that would not require as much

instruction to play. Other areas of expansion could be

to include a mode in which the guesser can review

previous guesses, which would improve the quality

of gameplay, and make the game more similar to the

original Mastermind game. This could be done by

implementing more registers into the system that

would store the guesses. In order to do that, we

would have to cap the number of guesses that the

user gets. This would require a counter to keep track

of the number of turns taken by the user. For the

purposes of what the original project was to include,

we were able to accomplish everything we planned

with the project. We got the peripherals to function in

coordination with the system and produce the desired

inputs and outputs for the system.

References

[1] Llamocca, Daniel. "VHDL Coding for FPGAs."

VHDL Coding for FPGAs. N.p., n.d. Web. 7 Dec.

2017.

http://www.secs.oakland.edu/~llamocca/VHDLforFP

GAs.html

[2] "Nexys 4 DDR Reference Manual." Nexys 4

DDR Reference Manual [Reference.Digilentinc].

N.p., n.d. Web. 7 Dec. 2017.

Timing Simulation

Overview

