
The Nexys 4 Number Cruncher

Bassam Jarbo, Donald Burns, Klajdi Lumani, Michael
Elias

Electrical and Computer Engineering

Department

School of Engineering and Computer Science
Oakland University,
Rochester Hills, MI

bassamjarbo@oakland.edu, djburns@oakland.edu,

klumani@oakland.edu, maelias@oakland.edu

Abstract:

The purpose of the project was to build a simple

calculator using 7seg displays and switches on the

Nexys 4 DDR FGPA. The calculator would be able to

add, subtract, multiple, and divide 4-bit unsigned

numbers. The project was a great learning experience

for digital logic and VHDL. An example is interfacing

multiple components and performing computations on

the FPGA. The project is going to utilize most of the

skills learned during the ECE 278 course.

Introduction:

The scope of the project was building a 4-bit calculator

using what we learned in our labs and a FPGA (Nexys

4). The team wanted a project that would involve

many topics covered in ECE 278 and challenge the

team to complete the project. This was a good project

to do because it incorporates many different digital

logic principals like architecturally based with

arithmetic operations. Some of the topics that were

covered in class were Arithmetic Logic Unit (ALU)

design, Finite State Machines (FSMs), counters,

multiplexers and priority encoders. Topics that will

need to be researched outside of class will be how to

utilize a debouncer and how to use a serializer. This

project has many applications such as being used as a

traditional calculator or a part of a larger project that

would need calculations performed.

Methodology:

There will be 2 4-bit unsigned inputs. These inputs will

be entered on the bottom of the board using dip

switches. The method of operation will be chosen by

the user. They will activate 1 of 4 preselected

switches. Each switch will correlate with one specific

function. Once that switch is pressed that signal will

go into a debouncer then a priority encoder. An

encoder is used just in case more than one switch is

enabled at one time. A 4x1 multiplexer is used to sort

out the signals then enter a BCD converter then a 7

segment converted which will be sent to a serializer.

The output of the serializer will show on the 7

segment displays. The leftmost 2 displays will show

what the input of A is, the next 2 show the value of B.

The 4 rightmost display will show the whole number

value of the calculation between A and B. If there is a

remainder, it will be displayed on 4 LEDs in unsigned

binary.

The first steps that were taken was to decide what our

inputs and outputs would be. After that we then

collaborated and designed a top level design that we

thought we could successfully implement. After the

top level was created we labeled all signals along with

their sizes. This is important because in portions of the

program input signals must be uniform in order to

avoid any errors. This helped us out a lot when

making the top level design and port mapping. After

that was completed we built each portion of the code.

When all errors were taken care of we moved on to

the top level then the test bench. We tested out

multiple areas to insure everything was working

properly before finally implementing the entire project

to the FPGA. Top level is shown in Figure (1)

Components:

Functions: Each function used was created in one of

our labs. The division function was modified in order

to support 2 4-bit inputs opposed to a 6-bit and 4-bit

input. The top levels of each lab are shown on Figures

(2,3,4,5). In order to avoid signed values. The

subtraction function was created so that the absolute

value for the difference between A and B would be

taken. It is also worth noting that the quotient of the

division function is displayed on the 7 segment

display while the remainder is displayed on 4 LEDs.

Each LED represent a binary value. The leftmost LED

will represent the MSB of a 4-bit binary unsigned

value, while the rightmost represents the LSB.

Debouncer: The purpose of the debouncer was to

insure that when a switch is activated or deactivated

there is no fluctuation in the signal. We did this by

cascading three delays. A single signal input was

entered into the first delay. On the rising edge of the

clock the signal will then pass through and enter the

second delay. That signal will then pass through the

second delay on the next rising edge. The same was

done with the third delay. The outputs of each delay

were ANDED with each other. This method insures

that the signal stays high for three clock ticks before a

high output is then passed through the AND gate. The

output of the AND gate is the output of the debouncer.

If the switch goes low, it only takes one clock tick

before the debouncer will output a low signal. We

used 4 debouncers, one for each switch which would

determine the function that will be performed. See

Figure (6) for top level design of debouncer.

Priority Encoder: The priority encoder was used to

insure that a correct “S” signal would be sent to both

4x1 multiplexers. Each debouncer output is sent to the

encoder. The encoder will then output a 2-bit. This

was done by using a when statement. We determined

all possible inputs from all four debouncers and gave

priority to the MSB which is the division switch, then

the multiplication, followed by subtraction then finally

addition. If the encoder does not receive a high signal

from any debouncer then the encoder sends a signal

that will allow the multiplexers to pass through the

addition signal.

4x1 Multiplexer: The multiplexers were used to allow

only one “function output” to pass through to the 7

segment displays and LEDS. The first multiplexer

would pass through the whole number values of each

function which would eventually go to the 7 segment

display. The second multiplexer was used to pass

through the remainder from the division function to

the LEDs. If any other function besides division was

chosen, then the second multiplexer would pass

through a value of 0 to the LEDs.

Binary to BCD Converter: We wanted our calculator

to display an output that was in base 10. In order to do

this, we had to convert the outputs of our functions to

binary converted decimal. This was done by making a

table of all possible binary inputs which ranged from

00000000 - 11100001 which is 0 - 225 in decimal. We

limited the output to 225 because the max output of

the calculator would be 15*15. The we made a table

of BCD values with the same range. A when

statement was used to tell allow program to choose the

correct BCD value based on the binary input. Two

different files were created for this, one that could

converter only up to 225 and a second that ranged up

to 4096. This file was made just in case we wanted to

increase out input sizes to 6-bits. Ultimately this file

was not used because the input size was 4-bits and we

didn't want to take up unnecessary memory on the

FPGA.

BCD to 7 segment Converter: This component was

used to send a binary code to the 7 segment display so

that the correct BCD value will be displayed. This was

again done by making a table and using a when

statement.

Serializer: This component was needed to allow

multiple 7 segment displays to appear as if they are all

on at once. A counter was used and set up to interval

every 1 millisecond. The counter output was sent to

the enable of a finite state machine. The FSM had 8

different states, one state for each 7 segment that we

wanted to use. As the counter increases intervals the

FSM goes to the next state. Each state would output a

unique 3-bit value. This unique signal was then sent to

the “S” input of an 8x1 multiplexer and a 3-to-8

decoder. It would then simultaneously allow one input

of the multiplexer to pass through to all 7 segment

displays and enable that inputs corresponding display.

Even though the multiplexers output is sent to each

display, only the one that is enabled will show it. The

inputs of the 8x1 multiplexer are A, B and the output

of the first 4x1 multiplexer. The displays are

flickering once every 8ms for only 1ms. This gives

each display the display frequency of 125hz, which is

too fast for the human eye to notice. Even though the

max output will only need 3 7 segment displays, four

were used. This was done just in case we increased the

input values of A and B.

Results:

We were very well prepared for this project. When

designing and implementing the program we ran into

very few road blocks. One of the roadblocks

encountered was displaying multiple values on

multiple 7 segment displays at one time. After

consulting with our professor we determined that

using a serializer was the best option. Another issue

faced was making the division to work properly. After

troubleshooting we discovered an enable switch

would be required in order to allow the FSM in the

division function to work properly. Images of the

board working are shown in Figure (7).

Conclusion:

This was a very good learning experience. We had the

opportunity to combine multiple files that were made

throughout the course along with new ones made

specifically for the project. It taught us that planning

and hard work in necessary in order to make

independent files to come together and work as a

function project. There are areas in which we could

improve on, such as increasing input size, including

signed values and using a keyboard as an interface.

Overall we are very happy with what we built together

as a team and are grateful he had an opportunity to do

this.

REFERENCES:

Daniel Llamocca ECE 278 Lab 2 F16 [1]
Daniel Llamocca ECE 278 Lab 3 F16 [2]
Daniel Llamocca ECE 278 Lab 6 F16 [3]
Danial Llamocca ECE 378 Midterm Exam W16 [4]
Danial Llamocca ECE 278 VHDL Coding for FPGAs Unit 7
Serializer Project F16 [5]
Darrin Hannah Lesson 74 Debouncer Circuit [6]

Appendix:

Figure 1- TopLevel 	

Figure 2 - Addition Toplevel [1]

Figure 3 - Subtraction Toplevel [4]

Figure 4 - Multiplication Toplevel [2]

Figure 5 - Debouncer TopLevel [6]

Figure 6 – Division Toplevel [3]

Figure 6 - Addition

Figure 7 - Subtraction

Figure 8 - Multiplication

Figure 9 - Division

	

