
Digital Stopwatch

Robert Kozubiak, Shawn Waite, Peter Isho
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

rjkozubiak@oakland.edu, smwaite@oakland.edu, pdisho@oakland.edu

Abstract—The purpose of this project is to implement a
digital stopwatch and display it on a Nexys 4 FPGA
board. This is possible by programming the logic in
VHDL, which is a strong language for digital logic. This
stopwatch works perfectly with no noticeable time
discrepancies. The only recommendation would be to use
a different method of time measurement if accuracy
down to nanoseconds is necessary.

I. INTRODUCTION

Having an accurate way to tell time is a necessity in all
aspects of life. Having the convenience of a stopwatch
allows for untold tales of greatness. To achieve the design of
a stopwatch, multiple components needed to be incorporated
perfectly. The internal design required eight counters, one 8-
to-1 multiplexer (MUX), one 2-to-1 MUX, one 7-segment
decoder, one 3-to-8 decoder, and one FSM.

Utilizing a cascading method that connects each counter
to the next one, the time discrepancy is gone. This will
produce a time that will be almost exact to the actual time.
The miniscule time delay would be in the nanoseconds due
to the registers used for the lap function. The lap function
acts as follows: As a switch is activated, the current time
will be displayed for a brief period while the true time will
be running in the background. When the switch goes down,
the real time displays.

This project can be used in any situation where time is
critical. Cooking, physical activity, and lab experiments are
merely three different ways this could be used. Whether or
not someone would want to carry this board, and a
computer, with them is another question.

II. METHODOLOGY

Our stopwatch has all of the basic functionalities that
would be expected, including start, pause, lap, and reset. A
switch starts the stopwatch, and the same switch pauses the
time. The time will be displayed on eight, 7-segment
displays but only six of them will be utilized. The other two,
the two leftmost displays, will always display 0. A max time
of 99 minutes and 59.99 seconds can be achieved, and
anything after that will reset the clock to 0 while continuing
the stopwatch. The second switch that is used controls the
lap function. This will display the current time to the 7-
segment displays as long as the switch is on. The main
feature of this is that the real time is still running so as soon
as the switch is turned off the actual time will be displayed.

The last function is to reset the time to allow the user to use
the stopwatch again.

A. Counters

Eight counters were used to make this stopwatch work, as
shown in Figure 1. Our stopwatch counts in increments of
10 ms, but the board has a native clock signal of 10 ns. To
adjust for this time discrepancy, an initial counter was
placed that produces one output signal for every 1,000,000
input signals. This counter essentially changes the clock
signal from 10 ns to 10 ms and allows the rest of the
stopwatch to proceed. This output signal will go two places.
The first will be the hundredths place for the seconds. This
counter, along with the next five counters, has three inputs
and two outputs. An enable, reset, and clock are the inputs,
while the outputs are one 4-bit signal and one 1-bit signal.
The enable tells the counter when to increment by one, the
4-bit output produces a signal that reflects the current count,
and the 1-bit output acts as a signal that tells the next
counter to increment by one. When the count is at 9 and it
goes to 0, a signal is also produced that goes to the next
counter’s enable at the next clock signal. This type of
cascading counting continues down to the last counter,
where the process will begin again. The fourth counter is for
the second’s tens place so the count goes to 5 before sending
out a signal to inform the next counter to increment. The last
counter deals with the FSM and will be discussed in a later
section.

Figure 1. Counters

B. Registers
The 4-bit signal that is sent out from each counter will go

to a register and a 2-to-1 MUX, as shown in Figure 2. This
step is for the lap function to work properly. There are six
total registers and each of them have the same inputs and
outputs. The inputs are an enable, reset, a 4-bit input, and a
clock, and the output is a 4-bit output. The output goes to
the same 2-to-1 MUX that the output of the corresponding
counter goes to. The select of each of the six, MUX’s is
connected to a switch which represents the lap function.
When the switch is down, the output of the MUX is the
counter’s signal. When the switch is up, the lap signal will
be the output. Another key component in this is the enable
of each of the registers. They are the opposite of the switch
status, so when the switch is down the enable is 1 and vice
versa. This allows the same 4-bit signal to be outputted from
the register if the lap function is activated. If the switch is
down the enable is 1, so the lap signal is always in sync with
the actual time. The output of each MUX will be discussed
next.

Figure 2. Register and 2-to-1 MUX for lap function

C. 8-to-1 Multiplexer

The signals from the previous MUX’s are eight inputs to
this 8-to-1 MUX, as shown in Figure 3. This MUX has all
the data that now needs to be displayed. Firstly, the eight
most significant bits are all 0 as this will correspond to
having 0’s on the two leftmost displays. The output goes to
a Hex to 7 segment decoder but first comes the question of
which input to select. This will come from a combination of
a counter and a FSM. The FSM being used is essentially a
counter that counts up to 7 and then resets to 0. Each count,
which is in the form of a 3-bit signal, gets sent out as the
select to the multiplexer, and that signal selects which 4-bit
signal to output to the decoder. Since there can only be one
display on at a time, a way around this is to switch the
display that is on very quickly. The human eye won’t be
able to tell the difference so it will seem as though all the
displays are on. To select which display to use, the same 3-
bit signal that acts as the select will be sent to a 3-to-8
decoder. The output of this signal is then passed to a not
gate followed by the AN signal, which decides which
display to turn on. The FSM’s enable comes from a similar
counter to the initial 10 ms counter. The only difference
between that counter and this one is that it is a 1 ms counter.

This is so the outputs and displays are being updated rapidly
which makes it seem as though all the displays are on.

Figure 3. The components needed to display the 8, 4-bit signals.

 The finite state machine has the same functionality that a
Modulo-8 counter would have. There are eight states that
correspond to an output of 000 to 111, as shown in Figure 4.
These are for both the selector of the MUX and the input of
the 3-to-8 decoder. The thing that allows the signal to go to
the next state is the enable, which is connected to a 1 ms
counter. If the enable is 0, the state stays the same until it is
1. This process repeats until the user decides to turn off the
stopwatch.

Figure 4. FSM (ASM Form)

Figure 5. Circuit Design

III. EXPERIMENTAL SETUP

The hardware used for this project is the FPGA board
known as the Nexys 4 Artix-7. The FPGA has eight 7-
segment displays that are the basis of our stopwatch project.
The software used to program the Nexys 4 Artix-7 FPGA
board is called ISE Design Suite 14.7. This software allows
an interface with the FPGA and also programs the various
functions of the stopwatch. Using an internal clock, the
FPGA keeps track of milliseconds, seconds, minutes, and
hours and displays them on the 7-segment displays. Using a
switch on the FPGA, the lap function “pauses” the 7-
segment display while the clock is still counting internally.
The expected results of these functions, is a working
stopwatch that can keep time accurately with and without
the lap function enabled. To test that the clock is accurate, a
working timer will be compared to the output of the
stopwatch to see if there are any discrepancies in the timing
of the board. The expected results should be extremely close
to the actual time. The only time discrepancy would be
when the lap function is activated. There would be a
miniscule delay, somewhere around 10 ns, that wouldn’t be
noticeable since this stopwatch is incrementing with 10 ms.
Nonetheless, this should be kept in mind if this stopwatch is
ever used to measure time with an accuracy of nanoseconds.

A testbench simulation was created to test the
functionality of the counters and the lap function, as shown
in Figure 6. The following picture shows three significant
signals, which include the output of the counters (d), the lap
signal (l), and the output of the 2 to 1 MUX. As the lap
switch is down, all three signals are identical. When the
switch is up, the counter output continues while the lap
signal stays the same. The output of the MUX is the same as

the lap signal, and this signal will eventually be on the 7-seg
displays. As the switch is pushed down, the signals, once
again, become identical.

Figure 6. Lap Function Testbench

 This next picture, as shown in Figure 7, is a testbench of
the counters working. As they go to 9 they reset to 0 and the
next counter increments by 1. This logic is implemented for
every counter output in the program. This process is
continued the entire time the stopwatch is on, so it is
essential to have this working.

Figure 7. Counter Testbench

IV. RESULTS

The results obtained met our expectations as there was no
noticeable delay between this stopwatch program and a real
stopwatch If measured down to the nanosecond, there would
probably be a delay, but that isn’t the case. The lap function
seems to work flawlessly, even for long periods of time in
between turning the lap input on and off. This is because of
the two different signals used, one for the real time and one
for the lap time. Even as the lap function is activated, the
real time is always continuing with no hesitation. As the
time passes its max of 99:59.59, it resets itself to 00:00:00
and continues. The reset button works as intended, as it
forces every one of the counter and lap outputs to 0. The
enable also works as intended, as the counters all turn on
and off immediately as the switch is turned on and off,
respectively. Overall, the results were sufficient and were
obtained as expected in all aspects of the project.

CONCLUSION

This project gave the group a better understanding of
digital logic combined with VHDL. Implementing this
stopwatch required knowledge of multiple components,
including counters, multiplexors, decoders, registers, and
finite state machines. All of these needed to be connected
with each other in a way to produce what was needed. A

project like this is a perfect stepping stone into the field of
embedded systems.

REFERENCES

[1] VHDL Coding for FPGAs

http://www.secs.oakland.edu/~llamocca/VHDLfor
FPGAs.html

