Traffic Buildup Detection System

By: Tammy Luu, Yinkai Liu, Shengzhuo Liu, Patrick Pantis
278 Digital Logic — Final Project — Fall 2016
School of Engineering and Computer Science, Oakland University
Instructor: Prof. Daniel Llamocca Obregon

Introduction

= The Purpose of this project is to create a traffic buildup
detection system that will better help the flow of traffic at a
traffic intersection.

= By using state codes that loop repeatedly, the traffic light
system could be created. Having a push button ground sensor,
the code could determine if their was a build up of cars at the
traffic intersection. This is done to prevent build up of traffic.

= During midnight traffic slows down significantly, so the main
road is implemented to change to a flashing yellow light, as well
as the side roads are changed to a flashing red. This is done to
prevent cars waiting at a light when no other vehicles are
driving at night.

= With all this a clock is displayed on a 7-segment display to
show the timing of the lights at the traffic intersect. This makes
it easier to follow the timing of the state codes as well as
iImplementing a cross walk timer for pedestrians.

Methodology

The software used in this project is Xilinx ISE Webpack Design
Software 14.7 coding with VHDL. All the code was then
programmed to our NexysTM-4DDR Artix-7 FPGA board to
displaying the traffic intersection lights. These are the
Methodology of the coding in our project:

= Traffic Light
= Blinking Yellow

ASM - Main and Side Traffic Light |

dﬂ!'r 1 lights == 010100

lights == 100010

count + 1
count==0

lights == 100100

lights == 100100

count + 1

lights <= 001100

lights == 10000

count + 1

Traffic Detected

 traffio=1

lights <= 100010

count + 1

| count <=0 |

s10| lights <= 100100 | €——,

count + 1

count + 1

Yellow Flickering Light

night = 1

lights == 100010

count + 1

#% Clock =ignal

NET "clk" LOC = "E3" | ICSTRANDARD = "LVCMOS : tBar 35, Pin name = #I0 L12P T1 MRCC 35, S5ch name = clkl0Omhz
WET "clk" THM NWET = sys_clk pin;

TIMESPEC T5_sys_clk pin = FERIOD sys_clk pin 100 MHz HIGH 50%;

#% BUTTONS

KET "day" ICSTANDRRD=LVCHOS33 ! #IC‘_l 9F T1 DQ5S 14
NET "night™ IOSTANDARD=LVCMOS33; #IC LSN T1 DQS D13 14
NET "tcraf" ICSTANDRRD=LVCHMOS533; #IO_:J.EF_TJ._HRCC_J.'}
#NET "btnr" ICSTANDRRD=LVCHOS33 ! #IC‘_llQ}I_Tl_D_'LS_l‘}
#NET "btnu™ ICSTANDLRD=LVCHMOS33; #IG_Z‘}}I_T:I_DDE_J.Q

£% LEDs

NET "1ld<0: LOC=H17 ICSTANDRRD=LVCHMOS33; #Iﬂ_ll 8P _T2_R24 15

NET "1 ' LOC=K15 ICSTANDARD=LVCHMOS533; #IO_:E 4F T3 R51 15

NET "ld<2: LOC=J13 ICSTANDARD=LVCHMOS533; #ID_:J_'?}T_TE_EE 5 15

NET ™ld<3: LOC=N14 ICSTANDRRD=LVCHMOS33; #Iﬂ_l BF T1 D11 14

NET "ld<4: LOC=R18 ICSTANDRRD=LVCHMOS33; #Iﬂ_l /P _T1 D09 14

NET "1ld<5: LOC=V1T ICSTANDARD=LVCHMOS533; #ID_:J. 8N T2 R11 D27 14

$#% 7 segment display

HNET "=eg<o>" LOC=T10 ICSTANDARD=LVCHMOS33; #Il}_lz EZ-I_TS_E-:I-:I_DJ. 5_14
NET C ' LOC=R10 TOSTANDRARD=LWVCHMOS33; #IC’_Q 5 14

KNET g<4: LOC=EKla ICSTANDRARD=LVCHOS33; #ID_E 5 1s

KNET i LOC=EK13 ICSTANDRARD=LVCHOS33; #ID_ll'?F_TE_EE 6 15

NET C ' LOC=P15 TOSTANDRARD=LWVCHMOS33; #IO_:J.SF_TE_HRCC_J.&
NET g<l: LOC=T11 TOSTANDRARD=LWVCHMOS33; #IC’_:l 9F T3 _R10 D326 _14
KNET g=0: LOoC=L18 ICSTANDRARD=LVCHOS33; #ID_l‘}F_TQ_D:I‘l_l‘l

NET n< 03 LOC=J17 | IOSTANDARD=LVCMCS533; #I0 L23FP T3 FOE B 15
NET n<l: LOC=J18 | IOSTANDARD=LVCMOS33; #I0 L23N T3 FWE B 15
NET <2 LOC=T9 | IOSTRANDARD=LVCMOS33; #I0 LZ4P T3 RO1 D17 14
NET n<3: LOC=J14 | ICSTRWNDARD=LVCMOS533; #IC L1SP T3 A2Z 15

NET : LOC=P14 | ICSTAWDARD=LVCMOS533; #I0C L8N T1 D12 14

NET n<s: LOC=T14 | IOSTANDARD=LVCMOS33; #I0 L14P TZ SRCC 14
NET n<es LOC=K2 | IOSTANDARD=LVCMOS33; #IC L23P T3 35

NET n<7: LOC=U13 | IOSTANDARD=LVCMCS533; #I0 L23NW T3 ROZ D18 14

B
B

library

use IEEE.

use . B =

entity traffic is
port (clk: im 5T
clr: in
Zensor:
clrr: im STD
lights: out

end traffic:

architecture traffic of
type state_type i=s (=0,

E (5 downto 0));

traffic is
=1, =2, =3, =4, =5,

signal state: state type;

gignal count: 5T
constant SECI10:
constant SECLS:
constant S5EC3:
constant S5ECI1:
constant SEC:
begin

E(5 downto 0);
(5 downto 0)
{5 downto 0)
E (5 downto 0)

process (clk, clrr, clr,sensor)

begin
if clr = '1' then
state <= =1;

clrr ='1"' then

state <= =6;
count <=
sensor ='1l'
state <= s59;
count <=

else if clk'event and clk = 'l1' then

case state is

when sl =>
if count
state
count
elze
state
count
end if:
when s2 =>
if count
state
count
else
state
count
end if;
when s3 =>»
if count
state

< S5EC3 then
<= =1;
<= count + 1;

<= =2;

<= "Q0o0o0oor:

< 5EC1 then
<= =2;
<= count + 1;

<= =3;

<=

< 5EC10 then
<= =3;

elze
state
count
end if:
when s3 =>
if count
state
count
else
state
count
end if:
when =4 =
if count
state
count
else
state
count
end if;
when a5 =>
if count
state
count
else
state
count
end if;
when s0 =>
if count
state
count
elze
state
count
end if:

when s6 =>
if count
state
count
else
state
count
end if:
when s7 =>
if count
state
count
else
state
count
end if:
--when the ground

when s9 =>

Code Traffic

< S5EC10 then
<= =3;
<= count + 1;

Count<3
=1

= s4; ¥ B
<_ s ;) ‘i‘?

< S5EC3 then
<= =4;
<= count + 1;

<= =5;
S0
000000
< BEC1 then

<= s55;
<= count + 1:

<=

< SEC15 then
<= s0;
<= count + 1:

<= sl;

< SEC1 then
<= =6;
<= count + 1:

< 5EC then
<= =57;
<= count +

<= =6:

<= "000000";

zensor is detected, the light is changed to red,

if count < 5EC3 then

36
010010

z9
100010

Count<3
1(sec)

Count

Count<
(3zec)

i
oloton

"

(3590

Count<db
beec)

yellow

5l
100010

Count<3

‘.i\m)

Count<30
(10sec)

33
Q1o

Brunch Street Main street]

Tine RED YELLOW GREEN RED YELLOW GREEN
i1 1 0
11
oo

=¥ 1D
11
15 1

0
0
1
0
i
0

0 0
0 0
0 0
0 0
0 1

Brumch Street Main street]
Tine RED YELLOW GREEN RED TELLOW GREEN
10 0 01 0
1 1 0 0 10 0
150 0 1 10 0

Ieen,

green, red.

Code Traffic

state <=
count <=
end if;
the ground sensor is detected, the light is changed to red, yellow and
when s9 =>
if count < 5EC3 then
state <= s9;
count <= count +1;
else
state <=
count <=
end if;
when s10 =>
if count < 5EC1 then
state <= =s10;
count <= count +1;
else
ztate <=
count <=
end if;

Count{3
=1

when s8& =»
if count < SECLS then
state <= s58;
count count +1;
else

state <= 4 Count<30

count 000000 ; (10sec)
end if; 54

010100
when others
state
end case:;
end if; Count {45
end if; 5
end process;

Brunch Street Nain street]
Time RED YELLOV GEEEN RED YELLOW GEEEN
BC) 1 1 i}

C2: process(state)
begin
case state
whnen s0 => lights
when sl => lights
wWhen 32 lights 0
when s3 lights 0 H - Brunch Street Main street]
when =4 lights 01 ; Time RED YELLOW GEEEN RED YELLOW GREEN
when 35 lights 1 ow: ERER o010
when sé lights 10 0 Lo 0
when 87 => lights 150 ! !
when s8 lights
wWhen =95 lights
whnen s10 =»lights
when others => lights <= "1
end case:
end process;
end traffics

1 1] 1]
1] 1] 1]
1] 1] 1]
1 1] 1]
1 1] 1

Code Digi Clk

[clr:
clrr:

Senso

downto

C
1k T 1. F
ss(clkl,clr,clx

£
£
£

-
0

H

Code Hex

downto

downt

when
when

when

when

Code Top Level

entity traffic lights top 1=
port |

night: in =
ctraf: in
an : out 5TD T downto 0):
(6 downto 0O);

)i
end traffic lights_top’

hrchitectare traffic lights top of traffic lights top is

component clkdiv is
porc |
mclk
clr : in
clk3 o
)y

end component;

utc

component traffic is

port (clk: in 5TD
clr: in STD
clrr: in STD
sensor: in
lights: out
end component;
component HEX is
Port (R : in 3STD
AW : out S5TD
end component;
component digi clk is
port (clr :in =td logics
clrr: in =td logicy
clkl : in std logicy
sensor: in std I
seconds : out =
) :
end component;
signal clr, clk3, clrr, sensor: STD LOGIC;
signal 1ol : std logic vector (S downto 0);
begin

gic vector (5 downto 0}

clrr <= night;
sensor <= traf;
Tl: clkdiw
port map |
mclk=>clk,
clr=rclr,
clk3=>clk3) ;

T2: traffic
port map |
clk=>clk3,
clr=rclr,
clrr=>clrr,
SEensSOr=r>Sensor,
lights=>1d) ;

U3: digi clk
port map |
clrr=>clrr,

clr =>»> clr,
Sensor=»> Sensor,
clkl=>clk,
second=s=> 1lol);

T4 :HEX
port map |
E=> lol,
LM=> =eg):

end traffic lights top;

Possible Improvements

= Count down timer could be implemented instead of a count
up timer.

= Using all 2 7-seg displays to show the timing of the lights
could be changed.

= More lights at the intersection, more state codes

= Improved coding the implement changing light at main
Intersection when build up of traffic if the button is held for 5
or more seconds. Current iteration changes the light instantly
when the button is pressed.

Conclusion

= From this project we learned how to use state codes and
timing functions to create a traffic signal. This is extremely
beneficial when programing things that go from one state into
another depending on whether the program passes that
case. If it passes it will continue onto the next case or loop its
current case until the code is passed.

Any Questions about our project?

Thank you for your attention!

