
 Digital Alarm Clock

(Ben Jackson, Devin Liu)
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

E-mails: bwjacks2@oakland.edu, daliu@oakland.edu

Abstract: Our project contains an attempt to develop a digital
clock containing the functionality of a clock and an alarm.
Switches and buttons are utilized to set the alarm times, and the
activation the RGB LEDs will represent the alarm. The display
used will be four of the eight, 7-segment display.

I. INTRODUCTION
The project’s scope is designing and writing code that

would reflect the use of a 24 hour digital alarm clock.
This will be a running clock that also has an alarm. The
alarm is represented by the use of RGB LEDs, which turn
on when the alarm time is equal to that of the clock time.
The alarm itself can be set quickly on the fly. The intent
was to program a fully fledged operating alarm clock,
which would have the ability to set a clock and an alarm.

II. METHODOLOGY

A. Design
The plan is to use four, seven segment displays to in

the orientation of HH:MM to represent the clock. To
represent this, we used the 10 millisecond counter that
was demonstrated in class that originally counts in 10
millisecond increments that counted up to one minute. We
modified this counter with two additional modulo
counters, and adjusted the increment counter to count
every 1 second. Thus we utilized six total counters that
represent the HH:MM:SS, but we’ll only display the
HH:MM on the seven segment displays.

We used the switches to set our alarm, using switches
J15 to R15 to resent the ones’ minutes, R17 to R13 as the
tens’ minutes, T8 to T13 as the ones’ hours, and H6 to
V10 as the tens’ hours. We used the right half of the
segment displays, an0 to an3, to display our time. The
values from counters are stored in a multiplexor which is
then checked every one millisecond to update the segment
displays.

Four 4-bit registers are used to store the alarm time.
Upon the press of a push button (N17), the values on the
switches are then stored in these four registers (See Figure
1, for the ASM model of our second state machine).

From state two, it constantly checks for when the
values stored on the registers are equal to that of the

clock, it would then move to state three. In state three, it
activates our RGB LED’s, one which produces white and
one which produces a purple color. From state three it
would wait for another push button to be pushed (P18), to
move back to state one, which has the RGB LED’s off
and waiting for the alarm to be enabled again.

Figure 1: Alarm Control Finite State Machine

 Jackson, Liu 1

B. Setup

III. EXPERIMENTAL SETUP

As was previously mentioned in the design section,
we’ll need six modulo counters; two of which that count
to nine, two of which that count to five, one which counts
to nine, and one which counts to two. To influence when
each we’ll need an increment counter that counts every
one second, thus keep the seven segment displays up to
date. A first, finite state machine is needed to check
continuously when the time changes to update to the
segment displays. We’ll then use another state machine to
influence when the alarm is set to the registers, and when
to compare the register values to their respective time
outputs to set off our RGB LEDs, The Alarm.

Figure 2 Timing Simulation of the alarm turning on

and off, when set to 00:00

IV. RESULTS

Originally, it was planned for this project to be a full
functioning alarm clock, where we could set the clock as
well as the alarm. However, due to personal conflicts, our
ability to work on the project efficiently was affected,
thus we settled for the clock to be more of a 20 hour
timer, than an actual clock.

Also it was difficult to be able to develop a
representation of a theoretical simulation (See Figure 2
for a portion of the timing simulation), as our counter
doesn’t begin until a second, instead of a nanosecond or
milliseconds, that the test bench runs on. Added to that, it
would’ve taken a very long for our timing simulation to
run, to be able represent our clock. To simulate it
completely, it would have taken over 24 hours to
complete the process of the simulation. Also, due to only
having one actual output, but displaying 4 values, we
found it difficult to develop a way to simulate the actual
counting clock in the simulation. Originally, it was
assumed we had something incorrectly coded, but after
implementing the code to the Nexys4 board, we
determined that it was due to the out top file setup.

V. CONCLUSION

Overall, if we didn’t encounter some of the conflicts
we had; we feel we would’ve been able to put together
our proposed scope of the project from the beginning.
Theoretically, if we had started from the onset of group
creation we would’ve been able to avoid some of the
issues we encountered. However, we were able to work
through and put together the project with the aid of
Professor Llamocca.

Improvements that could be made to our project would
be: implementing the full 24 hour aspect of our original
proposal, adding in an element to be able to also set/adjust
the clock, and an actual device that the Nexys4 could
output sound to signify the alarm, like a speaker playing
an alarm tune. Also to incorporate a visual flashing of the
clock time when the alarm is going off would be desired.
Theoretically, the 24 hour aspect could be maintained
from the second finite state machine we had.

Adjusting the clock would require the ones hours and
minutes to have a different counter with added lines codes
to increase the count on the press of two pushbuttons
outside.

Other additions include when the alarm was enabled,
we could’ve displayed the alarm on the remaining left
four segment displays, so that the user visually could
verify which time they were setting the alarm to.

VI. REFERENCES

[1] Fall 2016 – ECE278: Digital Logic Design. (n.d.).
Retrieved November 20, 2016, from
http://www.secs.oakland.edu/~llamocca/Fall2016_ec
e278.html

[2] Fall 2013 – Workshop: Digital Circuit Design with

VHDL. (n.d.). Retrieved November 26, 2016, from
http://dllamocca.org/Fall2013_WorkshopVHDL.htm

 Jackson, Liu 2

