Brain Drain

By: Zarif Ghazi, Max Manley, Robert Mclnerney




Game Functionality

» The objective of the game is to test your memory.

» In the game, players will be initially shown a diagram of six switches, and
their corresponding colors

» The players have 20 seconds to remember the colors

» The game commences and progresses through 8 different levels of varying
color combinations

» The player then has to remember which switch to push up based on the colors
displayed on the VGA




Top Level Architecture

clock resetn E sw1 sw2 sw3 swd swS swb

swiG-1)

FSM 1 FSM 2

select —\ 2-to-1 mux

s(5 downto 0)

/

clock
resetn
Q (unused) E
clock je—— Color Cantrol
s(5 downto 0)
resemn Counter count clock resetn
E

R

G

B

E VS WVGA
7Seg HS

count & color(11 downto 0)

seg(7 downto 0)

R G B WS HS

Tseg Display




Color Selection

» game_color receives the two bit
output from the counter (count),
which creates one second
increments and combines it with
the six bit output s_hold from the
multiplexer

The color sequences, for each
state, are then assigned to each
eight bit game_color signal

game color <= count & 5 _hold;
with game color select

color <=

"101000001100"
"101000001100"™
"101000001100"™
"101000001100"™

"000001100000"
"000001100000"
"101000000000"
"101000000000"

"101000001100"
"101000001100"
"111111111111"
"111111111111"

"000000001100"™
"O00000001100"
"O00000000000"
"000000000000"

when
when
when
when

when
when
when
when

when
when
when
when

when
when
when
when

"00000000", ——faml
"gl1000000",
"i0000000",
"11000000",

"00000010", ——f£sml
"01000010",
"10000010",
"11000010",

000000117, ——faml
"g1000011",
mi0000011",
"11000011",

"00000100", ——faml
"01000100",
"10000100",
"11000100",




FSM Description

» The FSMs control the sequence of
switch inputs. When the correct
sequence is detected, it moves to
the next state

» The value of s in FSM1 and FSM2
were initially the same, but in
order for the color controller to
tell the difference between S1 in
FSM1 and S1 in FSM2, each s
needed to be unique

» Only three states are shown here,
each FSM has eight states (or
levels) and a ninth state for game
over

Transitions: process (resetn, clock, switchl,switch?,switch3, switch4,switchb,switchb)
begin
if resetn = '0' then
x <= 51;
glsif (clock'event and clock = '1') then -- Sequence = 1,1-2,1-3,1-6, 4-5-6-2,2-3-8
case x 13
when 51 =>
if switchl = '1" then x <= 52} else x <= 51; end if;
when 52 =»
if switchd = '1' then if switch2='l' then x <= 33; else x <= 52; end if;end if;
when 53 =»
if switchl = '1' then if awitchd='l' then x <= 54; else x <= 53; end if;end if;
S
Cutputs: process (X) \
begin
case x 1=
when 51 => g <= "000000";
when 52 =» 5 <= "000010";
when 53 =» 8 <= "000011";



Demonstration

Purple Red White Black Green Blue




Problems/Improvements

» Problems:

» If all six switches are all pushed up
at the same time, the game
immediately enters the game over
state (59)

» The game has no lose state

>

Improvements:

Add a lose state where if the
wrong switches are pushed, the
game is over

Add more games (FSMs) and more
levels (states) so the game is more
robust

Varying difficulty levels



THANKS FOR TUNING IN!




