
Brain Drain

How far can you make it?

Robert McInerney, Max Manley, Zarif Ghazi

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

ramciner@oakland.edu, mmmarley@oakland.edu, zrghazi@oakland.edu

Abstract——the purpose of our project is to test the memory of the

participants. While crafting and concocting the different parts of our

project, our group had realized that we were able to separate the two

different games in our project by creating two finite state machines,

and the way to access these different FSMs was to dedicate it to a

switch on the board. The combinations of colors that were displayed

on the monitor differed based on which game was being played. If

we were to perform the project again, we would definitely have

considered adding more games (FSMs) in our program to make the

game even more challenging.

I. INTRODUCTION

The motivation behind the game Brain Drain was to
implement all the different components of digital circuitry that
we had learned about in class and utilize them in an effective
and creative manner. Our Project utilizes finite state machines,
a counter, a 2-1 multiplexer, a color control module, and a
VGA module. Each of these modules were talked about
during class, other than the color control module which was
constructed ourselves.

Figure 1

II. METHODOLOGY

A. Methodology for Finite State Machines

One of the main aspects of the project, which is also

responsible for creating the “meat” of the game, is the finite

state machine. At its core, the game is quite linear. The

game will enter the first level, and then progress through a

finite amount of levels in order to reach the endgame state.

Given the linear, progressive nature of finite state machines,

they were an obvious choice to handle this part of the game.

The first problem that was tackled was the amount of levels

the game has. This is accomplished by the amount of states

that were put into the finite state machine.

Figure 2

As shown in figure 2. Each state in the FSM corresponds to

a level in the game. For example, the game we created had

eight levels, thus our FSM had eight states. If we wanted to

increase or decrease the amount of levels, we would only

need to change the amount of states that the FSM has. The

next problem that the FSM takes care of is the sequence of

colors. The colors themselves are generated by the color

changer module, which develops a twelve bit number and

sends the number to the VGA to display a color, but the

FSM is how the game knows that the correct color or

sequence of colors was inputted by the player. The FSM was

built with six inputs, each input corresponding to one of six

unique colors being displayed on the VGA. The FSM then

begins in state one and requires the player to match the

single color being shown on the VGA. If the player flips the

correct switch up, the FSM will recognize this and move on

to the next state, or level. This is the basis behind how the

game knows when the player has passed the level. The FSM

is checking for a certain input or string of inputs, which

correspond to the colors on the level. Once the FSM detects

the appropriate inputs, it enters the next state of level. The

final problem that the FSM solves is one relating to the

color changing module. In order for the color changing

module to know which color or sequence of colors to

display, it requires some sort of input. This input comes

from the output of the FSM. The output of the FSM is state

dependent. This is necessary because the game needs to

leave the FSM, display on the VGA, then come back into

the FSM at the correct state. This is achieved through the

output signal “s” in the FSM.

Figure 3

As shown in figure 3, each state in the two FSMs has a

unique, six bit output called “s”. Usually, when using two or

more FSMs, the output signal “s” would be the same for all

FSMs. This approach does not work in our game because

the color change module needs to know not only which state

the FSM is in, but also which FSM is passing the state. This

is because if “s” was the same for FSM1 and FSM2, then

the sequence of colors would always be the same for each

state machine, but we wanted each state machine to have

unique sequences. By assigning a unique value for “s” to

state 1 in FSM1 and state 1 in FSM2, the color changing

module can determine which FSM is being used, and

therefore display the correct sequence for that specific

game.

B. Methodology for The Color Control Module

A key component of Brain Drain is displaying the colors that

the user needs to input. The finite state machine will require

a series of switches to be activated in order to move on to the

next level. These switches are given colors and flashed at the

player consecutively. The variable “s” mentioned in the

methodology of the finite state machines is given as in input

to the color control. Each “s” signal is specific not only to the

state but the finite state machine as well. This number is

concatenated with the input from the counter. (See figure 3)

The counter was needed in order to show multiple colors to

add complexity to the game. The reason for concatenating the

two values is to change the color every second according to

the state and the counter value. A 12-bit number is then given

to the VGA module to display various colors.

Figure 4

C. Methodology for The Seven Segment Display

An interesting detail to our game is how we utilized the

seven segment display to tell the user which level he or she

is in. The way this works is that it receives input in the

formation of a six bit number (input “s”) and then that

number correlates to what digit is displayed as a result of

bit –to-bit representation. The coding for this following

process can be seen in figure 5.

Figure 5

D. Methodology for The VGA Module

To implement Brain Drain a VGA display was needed. We

utilized the code given by the professor during class for the

VGA display. All we needed to do was input a 12-bit number

into the module to represent each color. The color control

module did the rest of the work by changing the 12-bit

number based on the counter.

III. EXPERIMENTAL SETUP

The project was implemented using Xilinx 14.7, a VGA
display and a Nexys 4 board. Using Xilinx we were able to
run a test bench with simulated values in order to check
functionality of the system prior to implementation on the
Nexys board. Once the test bench had ben ran we used the
Nexys 4 board and a VGA display to test the program. Each
version of the game was ran through in order to make sure that
no state of the game would represent a failure.

IV. RESULTS

Our program gave us the exact results that we intended.
When each switch was placed in the proper position based off
of the colors displayed to the user the program would enter the
next level. After completing every level the program would go
into an end game state and display a grey screen. To restart the
game you would need to click the reset button on the board.
The program would then enter level one again and you could
choose which game to play.

This project can be related to the material we learned in
class in various ways. One of these ways is that we used a
multiplexor to decide which game we were in. Finite state
machines were used to implement our project as well that were
gone over in length during class. Finally, a counter was also
used during one of our lab sections in order to solve a problem
so we were able to utilize the same methodology in our current
project.

CONCLUSIONS

After completing this project, our group has three main

take-away points heading into future projects and classes.

The first of these is the sheer versatility of finite state

machines. Finite state machines have a mind-boggling array

of uses, whether it is creating a game as such, or using a

FSM to model a multiplexer, or using a FSM to represent a

set of complex rules and conditions, while choosing which

inputs the user would like to use. If we wanted to, we could

have used a FSM to model the two to one multiplexer in our

project. The second main takeaway is that VGA displays use

a twelve bit number to generate a color which is being

output onto the screen. There are four pins on the VGA cord

dedicated to red, four pins dedicated to blue, and four pins

dedicated to green. Each one of these pins is assigned a

Boolean value of “1” or “0”. For example, the color red is

output to the VGA by the twelve bit number

“101000000000” but a different shade of red could be sent

with “110000000000”. The last main takeaway is that

counters can be used in many different applications in order

to modify an output over time. In our case, the counter was

used to modify which colors were being displayed on the

VGA every one second, but there are also other uses. Other

uses include using a counter to tell a register when to accept

new data or hold previous data, or using a counter to change

the output of a seven segment display over time.

 Our project has a couple of issues that remain

unresolved. The first of which is removing the picture of the

android from the VGA display. Another issue is that the

game has no explicit game over state if the player fails the

input the correct colors. If a game over state was added by

adding several more “if” statements to each FSM, it would

be a major improvement. Another possible improvement is

adding more games by adding more finite state machines, as

well as adding variable difficulty by making some FSMs

have sixteen states or some FSMs accept more than six

inputs and therefore the player is required to memorize more

than six colors. Overall, the project was extremely

rewarding and educational for all three members. We further

cemented our knowledge and control over finite state

machines, as well as acquiring deep knowledge about the

inner workings of the VGA display.

