
Serial Data Transmission and Recepetion with UART

Noah Gardner, Peter Semrau, William Strand

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: nbgardner@oakland.edu, pasemrau@oakland.edu, wwstrand@oakland.edu

Abstract—UART stands for universal asynchronous

receiver/transmitter and is a circuit that sends parallel data

through a serial line. A UART contains both a transmitter and

a receiver. UARTs are useful because without such techniques,

data would often be contained in their specific circuit without

any useful methods for importing/exporting data to other

circuits and devices. The goal of our project is to effectively show

proof of concept so our design may allow others to implement

our findings in their future projects.

I. INTRODUCTION

This report will cover the methodology and all of the
problems that had to be solved to finish the circuit, as well as
our experimental findings and conclusions about what we
have designed. The goal of our project is to be able to receive
a string of data, and then echo the same data back to the
computer to show transmission. We will first require the use
the terminal program PuTTY to interpret the key strokes from
the computer, and then transmit the corresponding
hexadecimal ASCII code back to the board through a serial
line. The serial data will be loaded into a shift register until all
the data has been loaded, then it will shift out the data in
parallel, sending it to eight LEDs and a seven segment display.
The LEDs will show the hexadecimal ASCII code of
whichever keyboard character was pressed, and then the seven
segment display will display the character if it is 0-9 or a-f. As
for transmission of data, the UART transmitter circuit that was
provided in class is implemented, but instead of the switches
being used for the input, it will be the same parallel output
from the shift register.

This project required both some knowledge covered in
course material, but the majority of the challenge was the
independent research. The transmission of data was largely
covered in class, with the circuit and code provided for us.
However, the reception of data is not covered in class and
coursework, and required a lot of independent research.

II. METHODOLOGY

A. Adjusting for Baud Rate

The baud rate refers to the rate at which information is
transferred in a communication channel. For our project, the
internal clock of the Nexys 4 board is not in sync with the
clock on the computer. The Nexys 4 clock runs at 100MHz
and the serial port of the computer can transfer data at a
maximum of 9600 bits per second. This means that the
internal clock on the Nexys 4 board is much faster than the

rate at which the computer will send and receive data, and
these two clocks must be in sync with each other in order to
communicate. This problem is solved by implementing an
additional counter that starts at the moment the data
communication begins. The counter is to simply output a high
whenever the count resets, and then the high is used as rate the
board uses to send or receive the serial bits from the computer.

B. Receiving Data

This part was the most challenging portion of our final
project. The receiver essentially shifts in data bit by bit into a
shift register, then reassembles the data. The data consists of
one start bit, eight bits of data (the ASCII code), and one stop
bit, which get transmitted from the computer terminal to the
board. We went about managing this data by creating a finite
state machine (FSM) with 12 states that shifts the data into the
shift register. The first state waits for the start bit, and sends it
to state two once it is received. State two then enables the two
counters My_genpulse and HalfCount. My_genpulse keeps
the board in sync with the transmission rate of the computer
by changing the states whenever the counter finishes, while
HalfCount samples the received bit hallway though each bits
transmission and then shifts it into the register [1]. States 3-10
function the same way with each bit received. State 11 then
waits until the transmission has ended by waiting until only
1’s are detected because the default output of the computer is
active high. State 12 enables the transmission section of the
code while disabling HalfCount and My_genpulse.

C. Transmitting Data

The circuit for this part of the project is covered in class
and in notes, and the same process is being implemented in
our design. The circuit is primarily a shift register that loads
data in parallel and then shifts it out one bit at a time at a
specific rate. One major difference in the design however, is
that the circuit uses a counter to transmit the correct number
of bits of data, while the receiving circuit used the states in the
FSM to receive the correct number of bits. The only change
we made to the design of the transmitter provided in the notes
is that we used the data from the receiver as the input for our
transmitter. This will cause the transmitter to always echo
back the same data that is received. Once the data has finished
transmitting the interior circuit sends a done signal to the top
level FSM and changes the top level state back to state 1.

III. EXPERIMENTAL SETUP

In order to troubleshoot and verify that our project does
indeed work, we programmed eight LEDs to display the
output from the receiving shift register at all times. We used
our knowledge of how the data was transmitted with the low
start bit and eight data bits to interpret the mistakes that we
were making in the code. It is now verified to be working as
intended because the LEDs show the correct hexadecimal
ASCII output whenever a key on the keyboard is pressed. A
VHDL testbench was also used as a tool to help us visually
verify our program. The behavioral simulation of the program
would clearly show us what data was being loaded into the
register at any time. The testbench was also useful for
determining the timing on our data sampling counter, as you
could visually see how the data sampling counter lined up with
each bit of data.

IV. RESULTS

This project most importantly verifies that parallel data
can be effectively transmitted and received through a serial
line. It also shows that counters can be used to synchronize
clocks and read a fast moving string of data. This project
confirms more basic topics that we have learned about in
class, such as the creation and implementation of shift
registers, counters, and finite state machines, as well as how
to apply these components in VHDL.

A link to a video of our project functioning is provided
here:

https://www.youtube.com/watch?v=Ih5DEnTnat0&featu
re=youtu.be

A link to the complete circuit diagram is provided here:
http://i.imgur.com/pJj5pcA.png
A link a behavioral simulation of our testbench is provided

here:
 http://i.imgur.com/oFiO8wy.png
Referring to the behavioral simulation, CState represents

the state of the FSM we have created. When Zdone his high
the state changes, and when Zhalfdone is high the data is
sampled and shifted into the register. The signal leds shows
what is currently loaded into the shift register at all times, and
the bits can be seen shifting in one by one as the data gets
sampled by zhalfdone.

CONCLUSIONS

All of our goals as far as proof of concept have been
achieved, and most importantly the challenge of receiving
parallel data through a serial line has been accomplished. That
being said, there are more creative ways to expand on our
findings. For example, we considered saving the data received
in past keyboard presses onto the other seven segment
displays, giving the capability to form words. Unfortunately,
we fell short on time and were unable to try this ourselves, but
we still accomplished everything we initially set out to do. The
ability to use a keyboard to send hexadecimal signals to the
Nexys 4 board opens up a lot of possibilities, and the next step
for our project would be to use it in a creative and interesting
way.

REFERENCES

[1] Pong P. Chu, “FPGA Prototyping by VHDL Examples,” Xilinx
Spartan – 3 Version. John Wiley & Sons, New Jersey, pp. 163-181,
2008.

https://www.youtube.com/watch?v=Ih5DEnTnat0&feature=youtu.be
https://www.youtube.com/watch?v=Ih5DEnTnat0&feature=youtu.be
http://i.imgur.com/pJj5pcA.png
http://i.imgur.com/oFiO8wy.png

