Adder/Subtractor with carry in

INTRODUCTION

- This is an important circuit in computer arithmetic. In particular the ability to incorporate a carry in (or borrow in) is a crucial requirement for specialized applications.
- A parameterized architecture is presented. Three parameters: DIRECTION, CIN_USED, and N. The circuit is described in VHDL using a purely structural approach based on full adders and logic gates.
 - The parameter N allows the selection of the size of the operation: N bits.
 - The parameter DIRECTION has 3 values: i) UNUSED: circuit includes an addsub input for addition/subtraction selection, ii) ADD: circuit for only addition with carry in, and iii) SUB: circuit for only subtraction with an active-low borrow in.
 - The parameter CIN_USED has 2 values: i) YES: here, the carry in (cin) input is considered, and ii) NO: here, the carry in (cin) input is ignored; for addition, the default then is set 0, and for subtraction is 1.

ADDER/SUBTRACTOR FOR SIGNED NUMBERS

- The table allows for the circuit in the figure. This is the standard adder/subtractor unit, where the cin input is an independent input.
 - cout = c(N), overflow = c(N) & c(N-1)
 - Addition: The operation is straightforward: A + B + cin
 - Subtraction: We need to treat cin as an active-low borrow in. Thus, for signed numbers: A − B = A + 2C(B) + cin − 1.
 - If cin = 0, there is a borrow in and A − B = A + 2C(B) − 1.
 - If cin = 1, there is no borrow, and A − B = A + 2C(B).

<table>
<thead>
<tr>
<th>Operation</th>
<th>add_sub</th>
<th>cin</th>
<th>c(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDITION</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SUBTRACTION</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- The proposed approach works very well for multi-precision subtraction: this is when we partition the operation into two or more adder/subtractor units. cout can be interpreted as an active-low borrow out that propagates to the next unit.

- Note that if we were to treat cin as an active-high borrow in, c(0) would depend on cin and addsub. Moreover, the circuit would not work well for multi-precision subtraction: the equation for c(0) in the second (leftmost) subtractor would be different that for the first (rightmost) subtractor. The resulting circuit would become unnecessarily convoluted.

ADDER/SUBTRACTOR FOR UNSIGNED NUMBERS

- ADDITION: we use the exact same hardware (with carry in). cout is the carry out bit and it also signals overflow. The overflow bit is only meaningful for signed operations.

- SUBTRACTION: We can use the subtractor for signed numbers. We need to zero extend the unsigned numbers to convert them to signed numbers. The operation is then a (N + 1) − bit addition. Also, c(0) = cin, which is an active-low borrow in.
✓ If $A \geq B$, then $S_n = 0$. According to the figure, this only happens if $c(N) = 1$. The correct signed result is $0S_{n-1}S_{n-2}...S_0$. The correct unsigned result is $S_{n-1}S_{n-2}...S_0$.
✓ If $A < B$, then $S_n = 1$. According to the figure, this only happens if $c(N) = 0$. The correct unsigned result is $1S_{n-1}S_{n-2}...S_0$. The unsigned result is $S_{n-1}S_{n-2}...S_0$. This result is incomplete since a borrow out exists ($c(N) = 0$).

- $cout = c(N)$, and $cout$ can be interpreted as an active-low borrow out (as in the case for signed numbers). If $cout = 1$, then there is no borrow out. If $cout = 0$, there is a borrow out.

- Since we are only considering $S_{n-1}S_{n-2}...S_0$ and $c(N)$, we notice that we do not need to actually perform zero-extension in the circuit: we just use the same adder/subtractor circuit and it is up to the user to treat the inputs as signed or unsigned. If the inputs are treated as unsigned, the overflow output is meaningless.