Homework 4

(Due date: March 31st @ 5:30 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (20 pts)

- Design a counter using a Finite State Machine (FSM):
 Counter features:
 ✓ Count: 000, 010, 111, 011, 110, 100, 001, 101, 000, 010, 111, ...
 ✓ resetn: Asynchronous active-low input signal. It initializes the count to “000”
 ✓ Input E: Synchronous input that increases the count when it is set to ‘1’.
 ✓ output z: It becomes ‘1’ when the count is 101.

- Provide the State Diagram (any representation), State Table, and the Excitation Table. Is this a Mealy or a Moore machine? Why? (10 pts)
- Provide the excitation equations (simplify your circuit using K-maps or the Quine-McCluskey algorithm) (5 pts)
- Sketch the circuit. (5 pts)

PROBLEM 2 (15 pts)

- Complete the timing diagram of the following circuit. \(G = G_3G_1G_2G_0 = 1001, Q = Q_3Q_2Q_1Q_0 \)

PROBLEM 3 (30 pts)

- Sequence detector (with overlap): (10 pts)
 Draw the state diagram (any representation) of a circuit (with an input \(x \)) that detects the following sequence: 1010011. The detector must assert an output \(z \) when the sequence is detected.
Complete the timing diagram of the following FSM. Is this a Mealy or a Moore machine? Why? (5 pts)

![FSM Diagram]

Provide the state diagram (in ASM form) and complete the timing diagram of the FSM whose VHDL description is listed below. (15 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity circ is
  port ( clk, resetn: in std_logic;
         a, b: in std_logic;
         x, w, z: out std_logic);
end circ;

architecture behavioral of circ is
  type state is (S1, S2, S3);
  signal y: state;
begin
  Transitions: process (resetn, clk, a, b)
  begin
    if resetn = '0' then
      y <= S1;
    elsif (clk'event and clk = '1') then
      case y is
        when S1 =>
          if a = '1' then
            if b = '0' then y <= S3; else y <= S1; end if;
          else
            y <= S2;
          end if;
        when S2 =>
          if b = '1' then y <= S3; else y <= S2; end if;
        when S3 =>
          if a = '0' then x <= '1'; end if;
      end case;
    end if;
  end process;

  Outputs: process (y, a, b)
  begin
    x <= '0'; w <= '0'; z <= '0';
    case y is
      when S1 => if a = '1' then z <= '1'; end if;
      when S2 => w <= '1';
      when S3 => if a = '0' then x <= '1'; end if;
    end case;
  end process;
end behavioral;
```
PROBLEM 4 (20 pts)
- Complete the timing diagram of the following digital circuit that includes an FSM (in ASM form) and a datapath circuit.

PROBLEM 5 (15 pts)
- Attach a printout of your Project Status Report (no more than three pages, single-spaced, 2 columns). This report should contain the current status of the project. You MUST use the provided template (Final Project - Report Template.docx).