Solutions - Homework 3
(Due date: March 12th @ 5:30 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (25 pts)

a) Complete the timing diagram of the circuit shown below. (5 pts)

b) Complete the timing diagram of the circuit whose VHDL description is shown below: (5 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity circ is
  port ( prn, x, clk: in std_logic;
        q: out std_logic);
end circ;

architecture a of circ is
  signal qt: std_logic;
begin
  process (prn, clk, x)
  begin
    if prn = '0' then
      q <= '1';
    elsif (clk'event and clk = '0') then
      if x = '0' then
        qt <= not(qt);
      end if;
    end if;
  end process;
  q <= qt;
end a;
```

c) Complete the timing diagram of the circuits shown below: (15 pts)
PROBLEM 2 (15 PTS)

- Complete the timing diagram of the circuit shown below: (8 pts)

- Complete the VHDL description of the synchronous sequential circuit whose truth table is shown below: (7 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity my_ff is
  port (a, b, c: in std_logic;
        clrn, clk: in std_logic;
        q: out std_logic);
end my_ff;

architecture a of my_ff is
begin
  signal qt: std_logic;
  process (clrn, clk, a, b)
  begin
    if clrn = '0' then qt <= '0';
    elsif (clk'event and clk='1') then
      if (a = '0' and b = '0') then
        qt <= c;
      elsif (a = '1' and b = '0') then
        qt <= '1';
      elsif (a = '1' and b = '1') then
        qt <= not (qt);
      end if;
    end process;
    q <= qt;
  end a;
```

<table>
<thead>
<tr>
<th>clrn</th>
<th>clk</th>
<th>A</th>
<th>B</th>
<th>Q_{t+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>Q_c</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>Q_c</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

PROBLEM 3 (15 PTS)

- Design a modulo-200 counter with enable, synchronous clear, and synchronous load.

- Asynchronous input: resetn

- Synchronous inputs:
 ✓ E: This is the enable input. It increases the count every time it is asserted ($E = 1$).
 ✓ sclr: It clears the count (it requires $E = 1$)

- Outputs:
 ✓ Q: This is the count.
 ✓ z: It is asserted only when the maximum count is reached.

- You need to determine the minimum number of bits n that it is required for the count.
- You can use adder units, registers, logic gates, and MUXes.
PROBLEM 4 (35 pts)

- The following circuit is a parallel/serial load shift register with enable input. Shifting operation: \(s_l = 0 \). Parallel load: \(s_l = 1 \).
 - Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will interconnect the flip flops and MUXes). Provide a printout. (15 pts)
 - Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your circuit (Timing Simulation). The clock frequency must be 100 MHz with 50% duty cycle. Provide a printout. (20 pts)
VHDL Code: Top File

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity my_st_shiftreg is
  generic (N: INTEGER:= 4;
            DIR: STRING:= "RIGHT");
  port (D: in std_logic_vector (N-1 downto 0);
        resetn, clock, din, E_, s_l: in std_logic;
        Q: out std_logic_vector (N-1 downto 0));
end my_st_shiftreg;

architecture structure of my_st_shiftreg is
  component dffe
    port ( d : in STD_LOGIC;
           clrn => resetn, prn => '1', clk => clock, ena => E, q => Qt);
  end component;

  component mux2to1
    port (a,b, sel: in std_logic;
          y: out std_logic);
  end component;

  signal ds, md, Qt: std_logic_vector (N-1 downto 0);
begin
  a0: assert (DIR = "LEFT" or DIR = "RIGHT")
    report "DIR can only be LEFT or RIGHT" severity error;
  rr: if DIR = "RIGHT" generate
    ds(N-1) <= din;
    ds(N-2 downto 0) <= Qt(N-1 downto 1);
  end generate;
  rl: if DIR = "LEFT" generate
    ds(0) <= din;
    ds(N-1 downto 1) <= Qt(N-2 downto 0);
  end generate;
  ti: for i in N-1 downto 0 generate
    fi: dffe port map (d => md(i), clrn => resetn, prn => '1', clk => clock, ena => E, q => Qt(i));
    mi: mux2to1 port map (a => ds(i), b => D(i), sel => s_l, y => md(i));
  end generate;
  Q <= Qt;
end structure;
```

VHDL Code: D-Type flip flop

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dffe is
  port ( d : in STD_LOGIC;
         clrn => resetn, prn => '1', clk => clock, ena => E, q : out STD_LOGIC);
end dffe;

architecture behaviour of dffe is
begin
  process (clk, ena, prn, clrn)
  begin
    if clrn = '0' then q <= '0';
    elsif prn = '0' then q <= '1';
    elsif (clk'event and clk='1') then
      if ena = '1' then q <= d; end if;
    end if;
  end process;
end behaviour;
```

VHDL Code: MUX 2-to-1

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity mux2to1 is
  port (a,b, sel: in std_logic;
        y : out std_logic);
end mux2to1;

architecture structure of mux2to1 is
begin
  with sel select
    y <= a when '0',
         b when others;
end structure;
```
VHDL Tesbench:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY tb_my_st_shiftreg IS
 generic (N: INTEGER:= 4);
END tb_my_st_shiftreg;

ARCHITECTURE behavior OF tb_my_st_shiftreg IS

COMPONENT my_st_shiftreg
 PORT(
 D : IN std_logic_vector(N-1 downto 0);
 resetn, clock, din : IN std_logic;
 E, s_l : IN std_logic;
 Q : OUT std_logic_vector(N-1 downto 0)));
END COMPONENT;

--Inputs
signal D : std_logic_vector(N-1 downto 0) := (others => '0');
signal resetn : std_logic := '0';
signal clock : std_logic := '0';
signal din : std_logic := '0';
signal E : std_logic := '0';
signal s_l : std_logic := '0';

--Outputs
signal Q : std_logic_vector(N-1 downto 0);

-- Clock period definitions
constant T : time := 10 ns;

BEGIN
 -- Instantiate the Unit Under Test (UUT)
 uut: my_st_shiftreg PORT MAP (D => D, resetn => resetn, clock => clock, din => din,
 E => E, s_l => s_l, Q => Q);

 -- Clock process definitions
 clock_process: process
 begin
 clock <= '0'; wait for T/2;
 clock <= '1'; wait for T/2;
 end process;

 -- Stimulus process
 stim_proc: process
 begin
 D <= "0110"; resetn <= '0'; wait for 100 ns;
 resetn <= '0'; wait for T*2;
 resetn <= '1';
 D <= "0110"; din <= '1'; E <= '1'; s_l <= '0'; wait for T;
 D <= "0110"; din <= '0'; E <= '1'; s_l <= '0'; wait for T;
 D <= "0110"; din <= '1'; E <= '1'; s_l <= '0'; wait for T;
 D <= "0110"; din <= '1'; E <= '1'; s_l <= '1'; wait for T;
 D <= "0110"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;
 D <= "0110"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;
 D <= "0110"; din <= '0'; E <= '0'; s_l <= '0'; wait for T;
 D <= "0110"; din <= '0'; E <= '1'; s_l <= '0'; wait for T;
 D <= "0110"; din <= '0'; E <= '1'; s_l <= '0'; wait for T;
 end process;
END;

PROBLEM 5 (10 PTS)

- Attach a printout of your Initial Project Report (no more than a page). This report should contain the project title, the project description, and the current status of the project. Use the provided template (Final Project – Report Template.docx).