Homework 3
(Due date: March 12th @ 5:30 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (25 pts)

a) Complete the timing diagram of the circuit shown below. (5 pts)

b) Complete the timing diagram of the circuit whose VHDL description is shown below: (5 pts)

library ieee;
use ieee.std_logic_1164.all;

entity circ is
 port (prn, x, clk: in std_logic;
 q: out std_logic);
end circ;

architecture a of circ is
 signal qt: std_logic;
begin
 process (prn, clk, x)
 begin
 if prn = '0' then
 q <= '1';
 elsif (clk'event and clk = '0') then
 if x = '0' then
 qt <= not(qt);
 end if;
 end if;
 end process;
 q <= qt;
end a;

c) Complete the timing diagram of the circuits shown below: (15 pts)
PROBLEM 2 (15 PTS)

- Complete the timing diagram of the circuit shown below: (8 pts)

- Complete the VHDL description of the synchronous sequential circuit whose truth table is shown below: (7 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity my_ff is
    port ( a, b, c: in std_logic;
            clrn, clk: in std_logic;
            q: out std_logic);
end my_ff;

architecture a of my_ff is
begin
    -- ???
end a;
```

<table>
<thead>
<tr>
<th>clrn</th>
<th>clk</th>
<th>A</th>
<th>B</th>
<th>Q_{t+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0</td>
<td>1</td>
<td>Q_t</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
</tr>
</tbody>
</table>

PROBLEM 3 (15 PTS)

- Design a modulo-200 counter with enable, synchronous clear, and synchronous load.

- Asynchronous input: resetn

- Synchronous inputs:
 - E: This is the enable input. It increases the count every time it is asserted (E = 1).
 - sclr: It clears the count (it requires E = 1)

- Outputs:
 - Q: This is the count.
 - z: It is asserted only when the maximum count is reached.

- You need to determine the minimum number of bits n that it is required for the count.
- You can use adder units, registers, logic gates, and MUXes.
PROBLEM 4 (35 PTS)

- The following circuit is a parallel/serial load shift register with enable input. Shifting operation: \(s_{\text{l}} = 0 \). Parallel load: \(s_{\text{l}} = 1 \).
 - Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will interconnect the flip flops and MUXes). Provide a printout. (15 pts)
 - Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your circuit (Timing Simulation). The clock frequency must be 100 MHz with 50% duty cycle. Provide a printout. (20 pts)

![Timing Diagram](image)

Problem 5 (10 PTS)

- Attach a printout of your Initial Project Report (no more than a page). This report should contain the project title, the project description, and the current status of the project. Use the provided template (Final Project - Report Template.docx).