8-Bit Calculator With Keyboard Input

Tasmina Ahmed, Brandon Banchiu, Ionatan Crisan
Constructing a calculator which performs the four basic mathematical operations
- Addition, subtraction, division (modulus), multiplication

- USB (PS/2 supported) keyboard
- Nexys4 FPGA board will manage the computation
- Nexys4 7 segment display
Keyboard - ASCII - Binary

- USB(PS/2) Keyboard
- Keyboard input takes ASCII code - using decoder will pass values into registers
 - A[0-2], B[0-2], OP
- Each register sends to appropriate ASCII to binary conversion register
- Converted bits sent to register that holds binary value
- Binary 8 bit numbers are send to ALU as A and B inputs
 - OP: a 2 bit input
Top-Level
ASCII to Binary Simulation
Calc_btn triggers whether the values are ready to be put into registers.
- Control Circuit waits for the first keys to be pressed which will indicate it’s A value and enable the A ascii to binary register.
- Second calc button press will enable the operator ascii to binary register.
- The third will enable the B value for ascii to binary register.
Calculations

- Using VHDL provided libraries
 - use IEEE.STD_LOGIC_1164.ALL
 - use IEEE.STD_LOGIC_ARITH.ALL
 - use IEEE.STD_LOGIC_UNSIGNED.ALL
- 8 bit inputs and outputs with a 2 bit selector for operation
- Division
 - 8 bit by 8 bit divider with 8 bit quotient and remainder
- Remainder set to 0 for all but division
- Sends to assigned register to hold value
ALU Simulation
7 Segment

- Using a serializer to display results
- The result of the calculation is displayed as the Hexadecimal value on the two leftmost displays
- The remainder is displayed on the two rightmost displays as the remainder’s Hexadecimal representation