Final Exam
(April 23rd @ 7:00 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (16 pts)
• Complete the timing diagram of the following circuit. \(G = G_4G_3G_2G_1G_0 = 10101 \). \(Q = Q_4Q_3Q_2Q_1Q_0 \)

PROBLEM 2 (16 pts)
• Complete the timing diagram of the following circuit that includes a T-type flip flop. (8 pts)
• Complete the timing diagram of the circuit shown below: (8 pts)
PROBLEM 3 (20 PTS)

- Complete the timing diagram of the following digital circuit that includes an FSM (in ASM form) and a datapath circuit.
 - Counter: $E = \text{sclr} = 1 \rightarrow Q = 0$. Shift Register: If $E = 1$: $s_L = 0 \rightarrow \text{shift}$, $s_L = 1 \rightarrow \text{load}$.

Diagram of the digital circuit with state transitions and timing labels.
PROBLEM 4 (16 pts)
- Sequence detector: Draw the State Diagram (any representation) and the Excitation Table of a circuit with an input x and output z. The machine has to generate $z = 1$ when it detects the sequence 01011 or 11100.

```
resetn
x
 FINITE STATE MACHINE
 clock
 z
```

```
<table>
<thead>
<tr>
<th>Input x</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output z</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

PROBLEM 5 (16 pts)
- Complete the timing diagram of the following circuit. Provide DO and Qix as hexadecimal values.
- $sclr$: Synchronous clear. If $E = sclr = 1$, then the register output is cleared (set to 0).

```
clock
 resetn
 DI 1010 1011 0110 1100 1001
 E
 restart
 Qi 0000
 Qix 00
 DO 00
```

```
<table>
<thead>
<tr>
<th>Clock</th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resetn</td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>1010</td>
<td>1011</td>
<td>0110</td>
<td>1100</td>
<td>1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Restart</td>
<td></td>
</tr>
<tr>
<td>Qi</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qix</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Instructor: Daniel Llamocca
PROBLEM 6 (16 PTS)
- Draw the State Diagram (in ASM form) of the FSM whose VHDL description in shown below. Is it a Mealy or Moore FSM?
- Complete the Timing Diagram.

library ieee;
use ieee.std_logic_1164.all;

entity circ is
 port (
 clk, resetn: in std_logic;
 s, b, z: in std_logic;
 done, r, q: out std_logic);
end circ;

architecture behavioral of circ is
 type state is (S1, S2, S3);
 signal y: state;
 begin
 Transitions: process (resetn, clk, s, b, z)
 begin
 if resetn = '0' then
 y <= S1;
 elsif (clk'event and clk = '1') then
 case y is
 when S1 =>
 if s = '1' then y <= S2;
 else y <= S1; end if;
 when S2 =>
 if z = '1' then y <= S3;
 else
 if b = '1' then y <= S3; else y <= S2; end if;
 end if;
 when S3 =>
 if s = '1' then y <= S3; else y <= S1; end if;
 end case;
 end if;
 end process;
 Outputs: process (y, z, b)
 begin
 done <= '0'; q <= '0'; r <= '0';
 case y is
 when S1 => q <= '1';
 when S2 =>
 if z = '0' then
 r <= '1';
 if b = '1' then q <= '1'; end if;
 end if;
 when S3 => done <= '1';
 end case;
 end process;
end behavioral;