Note to the Instructor for Probs. 8-41 to 8-44. These problems, as well as many others in this chapter are best implemented using a spreadsheet.

8-1 (a) Thread depth = 2.5 mm Ans.
 Width = 2.5 mm Ans.
 \(d_m = 25 - 1.25 - 1.25 = 22.5 \text{ mm} \)
 \(d_r = 25 - 5 = 20 \text{ mm} \)
 \(l = p = 5 \text{ mm} \) Ans.

 \[\begin{align*}
 &\text{Width} = 2.5 \text{ mm} \\
 &\text{Thread depth} = 2.5 \text{ mm} \\
 &d_m = 22.5 \text{ mm} \\
 &d_r = 20 \text{ mm} \\
 &l = p = 5 \text{ mm} \\
 \end{align*} \]

(b) Thread depth = 2.5 mm Ans.
Width at pitch line = 2.5 mm Ans.
\(d_m = 22.5 \text{ mm} \)
\(d_r = 20 \text{ mm} \)
\(l = p = 5 \text{ mm} \) Ans.

8-2 From Table 8-1,
\[\begin{align*}
 &d_r = d - 1.226 869 p \\
 &d_m = d - 0.649 519 p \\
 &\bar{d} = \frac{d - 1.226 869 p + d - 0.649 519 f}{2} = d - 0.938 194 p \\
 &A_i = \frac{\pi \bar{d}^2}{4} = \frac{\pi}{4} (d - 0.938 194 p)^2 \quad \text{Ans.}
\end{align*} \]

8-3 From Eq. (c) of Sec. 8-2,
\[\begin{align*}
 &P_r = F \frac{\tan \lambda + f}{1 - f \tan \lambda} \\
 &T_r = \frac{P_r d_m}{2} = \frac{F d_m \tan \lambda + f}{2} \\
 &e = \frac{T_o}{T_r} = \frac{F l / (2\pi)}{F d_m / 2} = \frac{\tan \lambda (1 - f \tan \lambda)}{\tan \lambda + f} \quad \text{Ans.}
\end{align*} \]
Using $f = 0.08$, form a table and plot the efficiency curve.

<table>
<thead>
<tr>
<th>λ, deg.</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.678</td>
</tr>
<tr>
<td>20</td>
<td>0.796</td>
</tr>
<tr>
<td>30</td>
<td>0.838</td>
</tr>
<tr>
<td>40</td>
<td>0.8517</td>
</tr>
<tr>
<td>45</td>
<td>0.8519</td>
</tr>
</tbody>
</table>

The torque required to raise the load is found using Eqs. (8-1) and (8-6)

$$T_R = \frac{5(22.5)}{2} \left[\frac{5 + \pi (0.09) 22.5}{\pi (22.5) - 0.09(5)} \right] + \frac{5(0.06) 45}{2} = 15.85 \text{ N} \cdot \text{m} \quad \text{Ans.}$$

The torque required to lower the load, from Eqs. (8-2) and (8-6) is

$$T_L = \frac{5(22.5)}{2} \left[\frac{\pi (0.09) 22.5 - 5}{\pi (22.5) + 0.09(5)} \right] + \frac{5(0.06) 45}{2} = 7.83 \text{ N} \cdot \text{m} \quad \text{Ans.}$$

Since T_L is positive, the thread is self-locking. From Eq. (8-4) the efficiency is

$$e = \frac{5(5)}{2\pi(15.85)} = 0.251 \quad \text{Ans.}$$

8-5 Collar (thrust) bearings, at the bottom of the screws, must bear on the collars. The bottom segment of the screws must be in compression. Whereas, tension specimens and their grips must be in tension. Both screws must be of the same-hand threads.

8-6 Screws rotate at an angular rate of

$$n = \frac{1720}{60} = 28.67 \text{ rev/min}$$
(a) The lead is 0.25 in, so the linear speed of the press head is
\[V = 28.67(0.25) = 7.17 \text{ in/min} \quad \text{Ans.} \]

(b) \(F = 2500 \text{ lbf/screw} \)

\[d_m = 2 - 0.25 / 2 = 1.875 \text{ in} \]

\[\sec \alpha = 1 / \cos(29^0 / 2) = 1.033 \]

Eq. (8-5):

\[T_R = \frac{2500(1.875)}{2} \left(\frac{0.25 + \pi(0.05)(1.875)(1.033)}{\pi(1.875) - 0.05(0.25)(1.033)} \right) = 221.0 \text{ lbf \cdot in} \]

Eq. (8-6):

\[T_e = 2500(0.08)(3.5 / 2) = 350 \text{ lbf \cdot in} \]

\[T_{\text{total}} = 350 + 221.0 = 571 \text{ lbf \cdot in/screw} \]

\[T_{\text{motor}} = \frac{571(2)}{60(0.95)} = 20.04 \text{ lbf \cdot in} \]

\[H = \frac{T_n}{63025} = \frac{20.04(1720)}{63025} = 0.547 \text{ hp} \quad \text{Ans.} \]

8-7 Note to the Instructor: The statement for this problem in the first printing of this edition was vague regarding the effective handle length. For the printings to follow the statement “The overall length is 4.25 in.” will be replaced by “A force will be applied to the handle at a radius of \(3 \frac{1}{2} \) in from the screw centerline.” We apologize if this has caused any inconvenience.

\[L = 3.5 \text{ in} \]
\[T = 3.5F \]

\[M = \left(L - \frac{3}{8} \right) F = \left(3.5 - \frac{3}{8} \right) F = 3.125F \]

\[S_y = 41 \text{ kpsi} \]

\[\sigma = S_y = \frac{32M}{\pi d^3} = \frac{32(3.125)F}{\pi(0.1875)^3} = 41000 \]

\[F = 8.49 \text{ lbf} \]

\[T = 3.5(8.49) = 29.7 \text{ lbf \cdot in} \quad \text{Ans.} \]

(b) Eq. (8-5), \(2\alpha = 60^0, l = 1/10 = 0.1 \text{ in}, f = 0.15, \sec \alpha = 1.155, p = 0.1 \text{ in} \)
\[d_m = \frac{3}{4} - 0.649 \times 519 (0.1) = 0.6850 \text{ in} \]

\[T_R = \frac{F_{\text{clamp}}(0.6850)}{2} \left(\frac{0.1 + \pi (0.15)(0.6850)(1.155)}{\pi (0.6850) - 0.15(0.1)(1.155)} \right) \]

\[T_R = 0.07586 F_{\text{clamp}} \]

\[F_{\text{clamp}} = \frac{T_R}{0.07586} = \frac{29.7}{0.07586} = 392 \text{ lbf} \quad \text{Ans.} \]

(c) The column has one end fixed and the other end pivoted. Base the decision on the mean diameter column. Input: \(C = 1.2, D = 0.685 \text{ in}, A = \pi (0.685^2)/4 = 0.369 \text{ in}^2, S_y = 41 \text{ kpsi}, E = 30(10^6) \text{ psi}, L = 6 \text{ in}, k = D/4 = 0.17125 \text{ in}, L/k = 35.04. \) From Eq. (4-45),

\[\left(\frac{l}{k} \right)_1 = \left(\frac{2\pi^2 CE}{S_y} \right)^{1/2} = \left[\frac{2\pi^2 (1.2) 30 (10^6)}{41000} \right]^{1/2} = 131.7 \]

From Eq. (4-46), the limiting clamping force for buckling is

\[F_{\text{clamp}} = P_{cr} = A \left[S_y - \left(\frac{S_y}{2\pi k} \right)^2 \frac{1}{CE} \right] \]

\[= 0.369 \left[41(10^3) - \left(\frac{41(10^3)}{2\pi} \right)^2 \frac{1}{1.2(30)10^6} \right] = 14.6(10^3) \text{ lbf} \quad \text{Ans} \]

(d) This is a subject for class discussion.

8-8

\[T = 8(3.5) = 28 \text{ lbf} \cdot \text{ in} \]

\[d_m = \frac{3}{4} - \frac{1}{12} = 0.6667 \text{ in} \]

\[l = \frac{1}{6} = 0.1667 \text{ in}, \quad \alpha = \frac{29^0}{2} = 14.5^0, \quad \sec 14.5^0 = 1.033 \]

From Eqs. (8-5) and (8-6)

\[T_{\text{total}} = \frac{0.6667 F}{2} \left[\frac{0.1667 + \pi (0.15)(0.6667)(1.033)}{\pi (0.6667) - 0.15(0.1667)(1.033)} \right] + \frac{0.15(1) F}{2} = 0.1542 F \]

\[F = \frac{28}{0.1542} = 182 \text{ lbf} \quad \text{Ans.} \]
8-9 \(d_m = 1.5 - 0.25/2 = 1.375 \) in, \(l = 2(0.25) = 0.5 \) in

From Eq. (8-1) and Eq. (8-6)

\[
T_r = \frac{2.2(10^3)(1.375)}{2} \left[\frac{0.5 + \pi(0.10)(1.375)}{\pi(1.375) - 0.10(0.5)} \right] + \frac{2.2(10^3)(0.15)(2.25)}{2} = 330 + 371 = 701 \text{ lbf} \cdot \text{in}
\]

Since \(n = \frac{V}{l} = 2/0.5 = 4 \) rev/s = 240 rev/min

so the power is

\[
H = \frac{Tn}{63 025} = \frac{701(240)}{63 025} = 2.67 \text{ hp} \quad \text{Ans.}
\]

8-10 \(d_m = 40 - 4 = 36 \) mm, \(l = p = 8 \) mm

From Eqs. (8-1) and (8-6)

\[
T = \frac{36F}{2} \left[\frac{8 + \pi(0.14)(36)}{\pi(36) - 0.14(8)} \right] + \frac{0.09(100)F}{2} = (3.831 + 4.5)F = 8.33F \quad \text{N} \cdot \text{m} \quad (F \text{ in kN})
\]

\[
\omega = 2\pi n = 2\pi(1) = 2\pi \text{ rad/s}
\]

\[
H = T\omega
\]

\[
T = \frac{H}{\omega} = \frac{3000}{2\pi} = 477 \text{ N} \cdot \text{m}
\]

\[
F = \frac{477}{8.33} = 57.3 \text{ kN} \quad \text{Ans.}
\]

\[
e = \frac{Fl}{2\pi T} = \frac{57.3(8)}{2\pi(477)} = 0.153 \quad \text{Ans.}
\]

8-11 (a) Table A-31, nut height \(H = 12.8 \) mm. \(L \geq l + H = 2(15) + 12.8 = 42.8 \) mm. Rounding up,

\(L = 45 \) mm \quad \text{Ans.}

(b) From Eq. (8-14), \(L_T = 2d + 6 = 2(14) + 6 = 34 \) mm

From Table 8-7, \(l_d = L - L_T = 45 - 34 = 11 \) mm, \(l_t = l - l_d = 2(15) - 11 = 19 \) mm,

\[
A_d = \pi(14^2) / 4 = 153.9 \text{ mm}^2. \quad \text{From Table 8-1, } A_t = 115 \text{ mm}^2. \quad \text{From Eq. (8-17)}
\]
(e) From Eq. (8-22), with \(l = 2(15) = 30 \text{ mm} \)

\[
k_m = \frac{0.5774 \pi Ed}{2 \ln \left(\frac{5(0.5774l + 0.5d)}{0.5774l + 2.5d} \right)} = \frac{0.5774 \pi (207)14}{2 \ln \left(\frac{5(0.5774(30) + 0.5(14))}{0.5774(30) + 2.5(14)} \right)} = 3116.5 \text{ MN/m} \quad \text{Ans.}
\]

8-12 (a) Table A-31, nut height \(H = 12.8 \text{ mm} \). Table A-33, washer thickness \(t = 3.5 \text{ mm} \). Thus, the grip is \(L = 2(15) + 3.5 = 33.5 \text{ mm} \). \(L \geq l + H = 33.5 + 12.8 = 46.3 \text{ mm} \). Rounding up \(L = 50 \text{ mm} \) \quad \text{Ans.}

(b) From Eq. (8-14), \(L_T = 2d + 6 = 2(14) + 6 = 34 \text{ mm} \)

From Table 8-7, \(l_d = L - L_T = 50 - 34 = 16 \text{ mm} \), \(l_t = l - l_d = 33.5 - 16 = 17.5 \text{ mm} \),
\(A_d = \pi (14^2) / 4 = 153.9 \text{ mm}^2 \). From Table 8-1, \(A_t = 115 \text{ mm}^2 \). From Eq. (8-17)

\[
k_h = \frac{A_dA_E}{A_d l_d + A_t l_t} = \frac{153.9(115)207}{153.9(17.5) + 115(16)} = 808.2 \text{ MN/m} \quad \text{Ans.}
\]

(c)

From Eq. (8-22)

\[
k_m = \frac{0.5774 \pi Ed}{2 \ln \left(\frac{5(0.5774l + 0.5d)}{0.5774l + 2.5d} \right)} = \frac{0.5774 \pi (207)14}{2 \ln \left(\frac{5(0.5774(33.5) + 0.5(14))}{0.5774(33.5) + 2.5(14)} \right)} = 2969 \text{ MN/m} \quad \text{Ans.}
\]
8-13 (a) Table 8-7, \(l = h + d/2 = 15 + 14/2 = 22 \text{ mm} \). \(L \geq h + 1.5d = 36 \text{ mm} \). Rounding up \(L = 40 \text{ mm} \) \(\text{Ans.} \)

(b) From Eq. (8-14), \(L_T = 2d + 6 = 2(14) + 6 = 34 \text{ mm} \)
From Table 8-7, \(l_d = L - L_T = 40 - 34 = 6 \text{ mm} \), \(l_t = l - l_d = 22 - 6 = 16 \text{ mm} \)
\[A_d = \pi (14^2)/4 = 153.9 \text{ mm}^2 \]. From Table 8-1, \(A_t = 115 \text{ mm}^2 \). From Eq. (8-17)
\[k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{153.9(115)207}{153.9(16)+115(6)} = 1162.2 \text{ MN/m} \] \(\text{Ans.} \)

(c) From Eq. (8-22), with \(l = 22 \text{ mm} \)
\[k_m = \frac{0.5774 \pi Ed}{2 \ln \left(\frac{5 \cdot 0.5774l + 0.5d}{0.5774l + 2.5d} \right)} = \frac{0.5774 \pi (207)14}{2 \ln \left(\frac{5 \cdot 0.5774(22) + 0.5(14)}{0.5774(22) + 2.5(14)} \right)} = 3624.4 \text{ MN/m} \] \(\text{Ans.} \)

8-14 (a) From Table A-31, the nut height is \(H = 7/16 \text{ in} \). \(L \geq l + H = 2 + 1 + 7/16 = 3 7/16 \text{ in} \).
Rounding up, \(L = 3.5 \text{ in} \) \(\text{Ans.} \)

(b) From Eq. (8-13), \(L_T = 2d + 1/4 = 2(0.5) + 0.25 = 1.25 \text{ in} \)
From Table 8-7, \(l_d = L - L_T = 3.5 - 1.25 = 2.25 \text{ in} \), \(l_t = l - l_d = 3 - 2.25 = 0.75 \text{ in} \)
\[A_d = \pi (0.5^2)/4 = 0.1963 \text{ in}^2 \]. From Table 8-2, \(A_t = 0.1419 \text{ in}^2 \). From Eq. (8-17)
\[k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{0.1963(0.1419)30}{0.1963(0.75) + 0.1419(2.25)} = 1.79 \text{ Mlbf/in} \] \(\text{Ans.} \)
Top steel frustum: $t = 1.5$ in, $d = 0.5$ in, $D = 0.75$ in, $E = 30$ Mpsi. From Eq. (8-20)

$$k_1 = \frac{0.5774\pi (30)^{0.5}}{\ln \left(\frac{1.155(1.5) + 0.75 - 0.5}{(0.75 + 0.5)} \right) \left(\frac{1.155(1.5) + 0.75 + 0.5}{(0.75 - 0.5)} \right)} = 22.65 \text{ Mlbf/in}$$

Lower steel frustum: $t = 0.5$ in, $d = 0.5$ in, $D = 0.75 + 2(1) \tan 30^\circ = 1.905$ in, $E = 30$ Mpsi. Eq. (8-20) ⇒ $k_2 = 210.7$ Mlbf/in

Cast iron: $t = 1$ in, $d = 0.5$ in, $D = 0.75$ in, $E = 14.5$ Mpsi (Table 8-8). Eq. (8-20) ⇒ $k_3 = 12.27$ Mlbf/in

From Eq. (8-18)

$$k_m = \left(\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} \right)^{-1} = \left(\frac{1}{22.65} + \frac{1}{210.7} + \frac{1}{12.27} \right)^{-1} = 7.67 \text{ Mlbf/in} \quad Ans.$$
Each steel washer frustum: $t = 0.095 \text{ in}, d = 0.531 \text{ in}$ (Table A-32), $D = 0.75 \text{ in}, E = 30 \text{ Mpsi}$. From Eq. (8-20)

$$k_1 = \frac{0.5774 \pi (30)0.531}{\ln \left[\frac{1.55(0.095)+0.75-0.531}{(0.75+0.531)} \right]} = 89.20 \text{ Mlbf/in}$$

Top plate, top steel frustum: $t = 1.5 \text{ in}, d = 0.5 \text{ in}, D = 0.75 + 2(0.095) \tan 30^\circ = 0.860 \text{ in}, E = 30 \text{ Mpsi}$. Eq. (8-20) $\Rightarrow k_2 = 28.99 \text{ Mlbf/in}$

Top plate, lower steel frustum: $t = 0.5 \text{ in}, d = 0.5 \text{ in}, D = 0.860 + 2(1) \tan 30^\circ = 2.015 \text{ in}, E = 30 \text{ Mpsi}$. Eq. (8-20) $\Rightarrow k_3 = 234.08 \text{ Mlbf/in}$

Cast iron: $t = 1 \text{ in}, d = 0.5 \text{ in}, D = 0.75 + 2(0.095) \tan 30^\circ = 0.860 \text{ in}, E = 14.5 \text{ Mpsi}$ (Table 8-8). Eq. (8-20) $\Rightarrow k_4 = 15.99 \text{ Mlbf/in}$

From Eq. (8-18)

$$k_m = (2/k_1 + 1/k_2 + 1/k_3 + 1/k_4)^{-1} = \frac{2}{89.20 + 1/28.99 + 1/234.08 + 1/15.99}^{-1} = 8.08 \text{ Mlbf/in} \quad \text{Ans.}$$

8-16

(a) From Table 8-7, $l = h + d/2 = 2 + 0.5/2 = 2.25 \text{ in}$.
$L \geq h + 1.5d = 2 + 1.5(0.5) = 2.75 \text{ in} \quad \text{Ans.}$

(b) From Table 8-7, $L_T = 2d + 1/4 = 2(0.5) + 0.25 = 1.25 \text{ in}$
\[l_d = L - L_T = 2.75 - 1.25 = 1.5 \text{ in}, \quad l_t = l - l_d = 2.25 - 1.5 = 0.75 \text{ in} \]

\[A_d = \pi (0.5^2)/4 = 0.1963 \text{ in}^2. \] From Table 8-2, \(A_t = 0.1419 \text{ in}^2. \) From Eq. (8-17)

\[k_b = \frac{A_d A E}{A_d l_t + A_t l_d} = \frac{0.1963 (0.1419) 30}{0.1963 (0.75) + 0.1419 (1.5)} = 2.321 \text{ Mlb/lin} \quad \text{Ans.} \]

(c)

Top steel frustum: \(t = 1.125 \text{ in}, \quad d = 0.5 \text{ in}, \quad D = 0.75 \text{ in}, \quad E = 30 \text{ Mpsi.} \) From Eq. (8-20)

\[k_t = \frac{0.5774 \pi (30) 0.5}{\ln \left[\frac{1.155 (1.125) + 0.75 - 0.5}{0.75 + 0.5} \right] \left[0.75 + 0.5 \right]} = 24.48 \text{ Mlb/lin} \]

Lower steel frustum: \(t = 0.875 \text{ in}, \quad d = 0.5 \text{ in}, \quad D = 0.75 + 2(0.25) \tan 30^\circ = 1.039 \text{ in}, \quad E = 30 \text{ Mpsi.} \) Eq. (8-20) \(\Rightarrow k_2 = 49.36 \text{ Mlb/lin} \)

Cast iron: \(t = 0.25 \text{ in}, \quad d = 0.5 \text{ in}, \quad D = 0.75 \text{ in}, \quad E = 14.5 \text{ Mpsi (Table 8-8).} \) Eq. (8-20) \(\Rightarrow k_3 = 23.49 \text{ Mlb/lin} \)

From Eq. (8-18)

\[k_m = (1/k_1 + 1/k_2 + 1/k_3)^{-1} = (1/24.48 + 1/49.36 + 1/23.49)^{-1} = 9.645 \text{ Mlb/lin} \quad \text{Ans.} \]

8-17 a) Grip, \(l = 2(2 + 0.095) = 4.19 \text{ in} . \) \(L \geq 4.19 + 7/16 = 4.628 \text{ in}. \)
Rounding up, \(L = 4.75 \text{ in} \quad \text{Ans.} \)
(b) From Eq. (8-13), \(L_T = 2d + 1/4 = 2(0.5) + 0.25 = 1.25 \) in

From Table 8-7, \(l_d = L - L_T = 4.75 - 1.25 = 3.5 \) in, \(l_t = l - l_d = 4.19 - 3.5 = 0.69 \) in

\(A_d = \pi (0.5^2)/4 = 0.1963 \) in\(^2\). From Table 8-2, \(A_t = 0.1419 \) in\(^2\). From Eq. (8-17)

\[
k_b = \frac{A_t A_t E}{A_t l_t + A_t l_d} = \frac{0.1963(0.1419)30}{0.1963(0.69) + 0.1419(3.5)} = 1.322 \text{ Mlbf/in} \quad \text{Ans.}
\]

(c)

Upper and lower halves are the same. For the upper half,

Steel frustum: \(t = 0.095 \) in, \(d = 0.531 \) in, \(D = 0.75 \) in, and \(E = 30 \) Mpsi. From Eq. (8-20)

\[
k_1 = \frac{0.5774\pi (30)0.531}{\ln \left[\frac{1.155(0.095) + 0.75 - 0.531}{0.75 + 0.531} \right]} = 89.20 \text{ Mlbf/in}
\]

Aluminum: \(t = 2 \) in, \(d = 0.5 \) in, \(D = 0.75 + 2(0.095) \tan 30^\circ = 0.860 \) in, and \(E = 10.3 \) Mpsi. Eq. (8-20) \(\Rightarrow \) \(k_2 = 9.24 \) Mlbf/in

For the top half, \(k_m' = (1/k_1 + 1/k_2)^{-1} = (1/89.20 + 1/9.24)^{-1} = 8.373 \) Mlbf/in

Since the bottom half is the same, the overall stiffness is given by

\[
k_m = (1/k_m' + 1/k_m')^{-1} = k_m'/2 = 8.373/2 = 4.19 \text{ Mlbf/in} \quad \text{Ans}
\]

8-18 (a) Grip, \(l = 2(2 + 0.095) = 4.19 \) in. \(L \geq 4.19 + 7/16 = 4.628 \) in.

Rounding up, \(L = 4.75 \) in \quad \text{Ans.}
(b) From Eq. (8-13), \(L_T = 2d + 1/4 = 2(0.5) + 0.25 = 1.25 \) in

From Table 8-7, \(l_d = L - L_T = 4.75 - 1.25 = 3.5 \) in, \(l_t = l - l_d = 4.19 - 3.5 = 0.69 \) in

\(A_d = \pi (0.5^2)/4 = 0.1963 \) in\(^2\). From Table 8-2, \(A_t = 0.1419 \) in\(^2\). From Eq. (8-17)

\[
k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{0.1963(0.1419)30}{0.1963(0.69) + 0.1419(3.5)} = 1.322 \text{ Mlbf/in} \quad \text{Ans.}
\]

(c)

Upper aluminum frustum: \(t = [4 + 2(0.095)]/2 = 2.095 \) in, \(d = 0.5 \) in, \(D = 0.75 \) in, and \(E = 10.3 \) Mpsi. From Eq. (8-20)

\[
k_1 = \frac{0.5774 \pi (10.3)^{0.5}}{\ln \frac{1.155(2.095) + 0.75 - 0.5}{(0.75+0.5)}} = 7.23 \text{ Mlbf/in}
\]

Lower aluminum frustum: \(t = 4 - 2.095 = 1.905 \) in, \(d = 0.5 \) in, \(D = 0.75 + 4(0.095) \tan 30^\circ = 0.969 \) in, and \(E = 10.3 \) Mpsi. Eq. (8-20) \(\Rightarrow k_2 = 11.34 \) Mlbf/in

Steel washers frustum: \(t = 2(0.095) = 0.190 \) in, \(d = 0.531 \) in, \(D = 0.75 \) in, and \(E = 30 \) Mpsi. Eq. (8-20) \(\Rightarrow k_3 = 53.91 \) Mlbf/in

From Eq. (8-18)

\[
k_m = (1/k_1 + 1/k_2 + 1/k_3)^{-1} = (1/7.23 + 1/11.34 + 1/53.91)^{-1} = 4.08 \text{ Mlbf/in} \quad \text{Ans.}
\]

8-19 (a) From Table A-31, the nut height is \(H = 8.4 \) mm. \(L > l + H = 50 + 8.4 = 58.4 \) mm.
Rounding up, \(L = 60 \text{ mm} \) \hspace{1cm} \text{Ans.}

(b) From Eq. (8-14), \(L_T = 2d + 6 = 2(10) + 6 = 26 \text{ mm}, l_d = L - L_T = 60 - 26 = 34 \text{ mm}, l_t = l - l_t = 50 - 34 = 16 \text{ mm}. A_d = \pi \left(\frac{10^2}{4} \right) = 78.54 \text{ mm}^2. \) From Table 8-1, \(A_t = 58 \text{ mm}^2. \) From Eq. (8-17)

\[
k_b = \frac{A_dA_tE}{A_dl_t + A_tl_d} = \frac{78.54(58.0)(207)}{78.54(16) + 58.0(34)} = 292.1 \text{ MN/m} \hspace{1cm} \text{Ans.}
\]

(c)

Upper and lower frustums are the same. For the upper half, Aluminum: \(t = 10 \text{ mm}, d = 10 \text{ mm}, D = 15 \text{ mm}, \) and from Table 8-8, \(E = 71 \text{ GPa}. \) From Eq. (8-20)

\[
k_1 = \frac{0.5774\pi \left(\frac{71}{10} \right)}{\ln \left[\frac{1.155(10) + 15 - 10}{(15 + 10)} \right]} = 1576 \text{ MN/m}
\]

Steel: \(t = 15 \text{ mm}, d = 10 \text{ mm}, D = 15 + 2(10) \tan 30^\circ = 26.55 \text{ mm}, \) and \(E = 207 \text{ GPa}. \) From Eq. (8-20)

\[
k_2 = \frac{0.5774\pi \left(\frac{207}{10} \right)}{\ln \left[\frac{1.155(15) + 26.55 - 10}{(26.55 + 10)} \right]} = 11440 \text{ MN/m}
\]

For the top half, \(k_m' = \left(1/k_1 + 1/k_2 \right)^{-1} = \left(1/1576 + 1/11440 \right)^{-1} = 1385 \text{ MN/m} \)
Since the bottom half is the same, the overall stiffness is given by

\[k_m = \left(\frac{1}{k'_m} + \frac{1}{k'_m} \right)^{-1} = \frac{k'_m}{2} = \frac{1385}{2} = 692.5 \text{ MN/m} \quad \text{Ans.} \]

8-20 (a) From Table A-31, the nut height is \(H = 8.4 \text{ mm} \). \(L > l + H = 60 + 8.4 = 68.4 \text{ mm} \).

Rounding up, \(L = 70 \text{ mm} \quad \text{Ans.} \)

(b) From Eq. (8-14), \(L_T = 2d + 6 = 2(10) + 6 = 26 \text{ mm} \), \(l_d = L - L_T = 70 - 26 = 44 \text{ mm} \), \(l_t = l - l_d = 60 - 44 = 16 \text{ mm} \). \(A_d = \pi (10^2) / 4 = 78.54 \text{ mm}^2 \). From Table 8-1, \(A_t = 58 \text{ mm}^2 \). From Eq. (8-17)

\[k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{78.54(58.0)207}{78.54(16) + 58.0(44)} = 247.6 \text{ MN/m} \quad \text{Ans.} \]

(c)

Upper aluminum frustum: \(t = 10 \text{ mm} \), \(d = 10 \text{ mm} \), \(D = 15 \text{ mm} \), and \(E = 71 \text{ GPa} \). From Eq. (8-20)
Lower aluminum frustum: $t = 20$ mm, $d = 10$ mm, $D = 15$ mm, and $E = 71$ GPa. Eq. (8-20) $\Rightarrow k_2 = 1.201$ MN/m

Top steel frustum: $t = 20$ mm, $d = 10$ mm, $D = 15 + 2(10) \tan 30^\circ = 26.55$ mm, and $E = 207$ GPa. Eq. (8-20) $\Rightarrow k_3 = 9.781$ MN/m

Lower steel frustum: $t = 10$ mm, $d = 10$ mm, $D = 15 + 2(20) \tan 30^\circ = 38.09$ mm, and $E = 207$ GPa. Eq. (8-20) $\Rightarrow k_4 = 29.070$ MN/m

From Eq. (8-18)

$$k_m = \left(\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{1}{k_4}\right)^{-1} = \left(\frac{1}{1576} + \frac{1}{1.201} + \frac{1}{9.781} + \frac{1}{29.070}\right)^{-1} = 623.5 \text{ MN/m} \quad \text{Ans.}$$

8-21 (a) From Table 8-7, $l = h + d/2 = 10 + 30 + 10/2 = 45$ mm. $L \geq h + 1.5d = 10 + 30 + 1.5(10) = 55$ mm \quad \text{Ans.}

(b) From Eq. (8-14), $L_T = 2d + 6 = 2(10) + 6 = 26$ mm, $l_d = L - L_T = 55 - 26 = 29$ mm, $l_t = l - l_d = 45 - 29 = 16$ mm. $A_d = \pi (10^2) / 4 = 78.54$ mm2. From Table 8-1, $A_I = 58$ mm2. From Eq. (8-17)

$$k_t = \frac{A_d A_E}{A_d l_t + A_I l_d} = \frac{78.54(58.0)207}{78.54(16) + 58.0(29)} = 320.9 \text{ MN/m} \quad \text{Ans.}$$

(e)
Upper aluminum frustum: $t = 10 \text{ mm}, d = 10 \text{ mm}, D = 15 \text{ mm}, \text{ and } E = 71 \text{ GPa}$. From Eq. (8-20)

$$k_1 = \frac{0.5774 \pi (10.3)71}{\ln \left[\frac{1.155(2.095) + 15 - 10}{(15 + 10)} \right]} = 1576 \text{ MN/m}$$

Lower aluminum frustum: $t = 5 \text{ mm}, d = 10 \text{ mm}, D = 15 \text{ mm}, \text{ and } E = 71 \text{ GPa}$. Eq. (8-20) $\Rightarrow k_2 = 2300 \text{ MN/m}$

Top steel frustum: $t = 12.5 \text{ mm}, d = 10 \text{ mm}, D = 15 + 2(10) \tan 30^\circ = 26.55 \text{ mm}, \text{ and } E = 207 \text{ GPa}$. Eq. (8-20) $\Rightarrow k_3 = 12759 \text{ MN/m}$

Lower steel frustum: $t = 17.5 \text{ mm}, d = 10 \text{ mm}, D = 15 + 2(5) \tan 30^\circ = 20.77 \text{ mm}, \text{ and } E = 207 \text{ GPa}$. Eq. (8-20) $\Rightarrow k_4 = 6806 \text{ MN/m}$

From Eq. (8-18)

$$k_m = (1/k_1 + 1/k_2 + 1/k_3 + 1/k_4)^{-1} = (1/1576 + 1/2300 + 1/12759 + 1/6806)^{-1} = 772.4 \text{ MN/m} \quad \text{Ans.}$$

8-22 Equation (f), p. 436: \[C = \frac{k_b}{k_b + k_m} \]

Eq. (8-17): \[k_b = \frac{A_d A E}{A_d l_t + A_l l_d} \]

Eq. (8-22): \[k_m = \frac{0.5774 \pi (207)d}{2 \ln \left[\frac{0.5774(40) + 0.5d}{0.5774(40) + 2.5d} \right]} \]

See Table 8-7 for other terms used.

Using a spreadsheet, with coarse-pitch bolts (units are mm, mm², MN/m):

<table>
<thead>
<tr>
<th>d</th>
<th>A_t</th>
<th>A_d</th>
<th>H</th>
<th>$L > L$</th>
<th>L</th>
<th>L_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>58</td>
<td>78.53982</td>
<td>8.4</td>
<td>48.4</td>
<td>50</td>
<td>26</td>
</tr>
<tr>
<td>12</td>
<td>84.3</td>
<td>113.0973</td>
<td>10.8</td>
<td>50.8</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>115</td>
<td>153.938</td>
<td>12.8</td>
<td>52.8</td>
<td>55</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>157</td>
<td>201.0619</td>
<td>14.8</td>
<td>54.8</td>
<td>55</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>245</td>
<td>314.1593</td>
<td>18</td>
<td>58</td>
<td>60</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td>353</td>
<td>452.3893</td>
<td>21.5</td>
<td>61.5</td>
<td>65</td>
<td>54</td>
</tr>
<tr>
<td>30</td>
<td>561</td>
<td>706.8583</td>
<td>25.6</td>
<td>65.6</td>
<td>70</td>
<td>66</td>
</tr>
<tr>
<td>d</td>
<td>l</td>
<td>l_d</td>
<td>l_t</td>
<td>k_b</td>
<td>k_m</td>
<td>C</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>24</td>
<td>16</td>
<td>356.0129</td>
<td>1751.566</td>
<td>0.16892</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>25</td>
<td>15</td>
<td>518.8172</td>
<td>2235.192</td>
<td>0.18836</td>
</tr>
<tr>
<td>14</td>
<td>40</td>
<td>21</td>
<td>19</td>
<td>686.2578</td>
<td>2761.721</td>
<td>0.19903</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>17</td>
<td>23</td>
<td>895.9182</td>
<td>3330.796</td>
<td>0.21196</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>14</td>
<td>26</td>
<td>1373.719</td>
<td>4595.515</td>
<td>0.23013</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>11</td>
<td>29</td>
<td>1944.24</td>
<td>6027.684</td>
<td>0.24389</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>4</td>
<td>36</td>
<td>2964.343</td>
<td>8487.533</td>
<td>0.25885</td>
</tr>
</tbody>
</table>

The 14 mm would probably be ok, but to satisfy the question, use a 16 mm bolt. *Ans.*

8-23 Equation (f), p. 436: \[C = \frac{k_b}{k_b + k_m} \]

Eq. (8-17): \[k_b = \frac{A_d A E}{A_d l_r + A_l l_d} \]

\[
\begin{align*}
1.5d + 1.155'' & \\
Steel & \\
\text{Cast Iron} & \\
1.5'' & \\
0.5'' & \\
1'' & \\
1.5d & \\
\end{align*}
\]

For upper frustum, Eq. (8-20), with $D = 1.5d$ and $t = 1.5$ in:

\[k_1 = \frac{0.5774 \pi (30) d}{\ln \left[\frac{1.155(1.5) + 0.5d}{1.155(1.5) + 2.5d} \right] (2.5d) \ln \left[\frac{1.733 + 0.5d}{1.733 + 2.5d} \right] (0.5d)} \]

Lower steel frustum, with $D = 1.5d + 2(1) \tan 30^\circ = 1.5d + 1.155$, and $t = 0.5$ in:

\[k_2 = \frac{0.5774 \pi (30) d}{\ln \left[\frac{(1.733 + 0.5d)(2.5d + 1.155)}{(1.733 + 2.5d)(0.5d + 1.155)} \right]} \]
For cast iron frustum, let $E = 14.5$ Mpsi, and $D = 1.5\, d$, and $t = 1\, \text{in}$:

$$k_3 = \frac{0.5774\pi (14.5) d}{\ln \left[\frac{5(1.155 + 0.5d)}{(1.155 + 2.5d)} \right]}$$

Overall, $k_m = (1/k_1 + 1/k_2 + 1/k_3)^{-1}$

See Table 8-7 for other terms used.

Using a spreadsheet, with coarse-pitch bolts (units are in, in2, Mlbf/in):

<table>
<thead>
<tr>
<th>d</th>
<th>A_t</th>
<th>A_d</th>
<th>H</th>
<th>$L >$</th>
<th>L</th>
<th>L_T</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>0.0775</td>
<td>0.110447</td>
<td>0.328125</td>
<td>3.328125</td>
<td>3.5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0.4375</td>
<td>0.1063</td>
<td>0.15033</td>
<td>0.375</td>
<td>3.375</td>
<td>3.5</td>
<td>1.125</td>
<td>3</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1419</td>
<td>0.19635</td>
<td>0.4375</td>
<td>3.4375</td>
<td>3.5</td>
<td>1.25</td>
<td>3</td>
</tr>
<tr>
<td>0.5625</td>
<td>0.182</td>
<td>0.248505</td>
<td>0.484375</td>
<td>3.484375</td>
<td>3.5</td>
<td>1.375</td>
<td>3</td>
</tr>
<tr>
<td>0.625</td>
<td>0.226</td>
<td>0.306796</td>
<td>0.546875</td>
<td>3.546875</td>
<td>3.75</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>0.75</td>
<td>0.334</td>
<td>0.441786</td>
<td>0.640625</td>
<td>3.640625</td>
<td>3.75</td>
<td>1.75</td>
<td>3</td>
</tr>
<tr>
<td>0.875</td>
<td>0.462</td>
<td>0.60132</td>
<td>0.75</td>
<td>3.75</td>
<td>3.75</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>l_d</th>
<th>l_t</th>
<th>k_b</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>k_m</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>2.5</td>
<td>0.5</td>
<td>1.031389</td>
<td>15.94599</td>
<td>178.7801</td>
<td>8.461979</td>
<td>5.362481</td>
<td>0.161309</td>
</tr>
<tr>
<td>0.4375</td>
<td>2.375</td>
<td>0.625</td>
<td>1.383882</td>
<td>19.21506</td>
<td>194.465</td>
<td>10.30557</td>
<td>6.484256</td>
<td>0.175884</td>
</tr>
<tr>
<td>0.5</td>
<td>2.25</td>
<td>0.75</td>
<td>1.791626</td>
<td>22.65332</td>
<td>210.6084</td>
<td>12.26874</td>
<td>7.668728</td>
<td>0.189383</td>
</tr>
<tr>
<td>0.5625</td>
<td>2.125</td>
<td>0.875</td>
<td>2.245705</td>
<td>26.25931</td>
<td>227.2109</td>
<td>14.35052</td>
<td>8.915294</td>
<td>0.20121</td>
</tr>
<tr>
<td>0.625</td>
<td>2.25</td>
<td>0.75</td>
<td>2.816255</td>
<td>30.03179</td>
<td>244.2728</td>
<td>16.55009</td>
<td>10.22344</td>
<td>0.215976</td>
</tr>
<tr>
<td>0.75</td>
<td>2</td>
<td>1</td>
<td>3.988786</td>
<td>38.07191</td>
<td>279.7762</td>
<td>21.29991</td>
<td>13.02271</td>
<td>0.234476</td>
</tr>
<tr>
<td>0.875</td>
<td>1.75</td>
<td>1.25</td>
<td>5.341985</td>
<td>46.7663</td>
<td>317.1203</td>
<td>26.51374</td>
<td>16.06359</td>
<td>0.24956</td>
</tr>
</tbody>
</table>

Use a $\frac{9}{16} - 12$ UNC \times 3.5 in long bolt \textit{Ans.}

8-24 Equation (f), p. 436: \[C = \frac{k_b}{k_b + k_m} \]

Eq. (8-17): \[k_b = \frac{A_d A_e}{A_d l_d + A l_d} \]
Top frustum, Eq. (8-20), with $E = 10.3\text{Mpsi}$, $D = 1.5 \, d$, and $t = l/2$:

$$k_1 = \frac{0.5774 \pi (10.3) d}{\ln \left[\frac{1.155 \, l/2 + 0.5d}{1.155 \, l/2 + 2.5d} \right]}$$

Middle frustum, with $E = 10.3 \, \text{Mpsi}$, $D = 1.5d + 2(l - 0.5) \tan 30^\circ$, and $t = 0.5 - l/2$

$$k_2 = \frac{0.5774 \pi (10.3) d}{\ln \left[\frac{1.155(0.5 - 0.5l) + 0.5d + 2(l - 0.5) \tan 30^\circ}{1.155(0.5 - 0.5l) + 2.5d + 2(l - 0.5) \tan 30^\circ} \right]}$$

Lower frustum, with $E = 30\text{Mpsi}$, $D = 1.5 \, d$, $t = l - 0.5$

$$k_3 = \frac{0.5774 \pi (30) d}{\ln 5 \left[\frac{1.155(l - 0.5) + 0.5d}{1.155(l - 0.5) + 2.5d} \right]}$$

See Table 8-7 for other terms used.

Using a spreadsheet, with coarse-pitch bolts (units are in, in2, Mlbf/in)
Table:

<table>
<thead>
<tr>
<th>Size</th>
<th>(d)</th>
<th>(A_i)</th>
<th>(A_d)</th>
<th>(L >)</th>
<th>(L)</th>
<th>(L_T)</th>
<th>(l)</th>
<th>(l_d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.073</td>
<td>0.00263</td>
<td>0.004185</td>
<td>0.6095</td>
<td>0.75</td>
<td>0.396</td>
<td>0.5365</td>
<td>0.354</td>
</tr>
<tr>
<td>2</td>
<td>0.086</td>
<td>0.0037</td>
<td>0.005809</td>
<td>0.629</td>
<td>0.75</td>
<td>0.422</td>
<td>0.543</td>
<td>0.328</td>
</tr>
<tr>
<td>3</td>
<td>0.099</td>
<td>0.00487</td>
<td>0.007698</td>
<td>0.6485</td>
<td>0.75</td>
<td>0.448</td>
<td>0.5495</td>
<td>0.302</td>
</tr>
<tr>
<td>4</td>
<td>0.112</td>
<td>0.00604</td>
<td>0.009852</td>
<td>0.668</td>
<td>0.75</td>
<td>0.474</td>
<td>0.556</td>
<td>0.276</td>
</tr>
<tr>
<td>5</td>
<td>0.125</td>
<td>0.00796</td>
<td>0.012272</td>
<td>0.6875</td>
<td>0.75</td>
<td>0.5</td>
<td>0.5625</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>0.138</td>
<td>0.00909</td>
<td>0.014957</td>
<td>0.707</td>
<td>0.75</td>
<td>0.526</td>
<td>0.569</td>
<td>0.224</td>
</tr>
<tr>
<td>8</td>
<td>0.164</td>
<td>0.014</td>
<td>0.021124</td>
<td>0.746</td>
<td>0.75</td>
<td>0.578</td>
<td>0.582</td>
<td>0.172</td>
</tr>
<tr>
<td>10</td>
<td>0.19</td>
<td>0.0175</td>
<td>0.028353</td>
<td>0.785</td>
<td>1</td>
<td>0.63</td>
<td>0.595</td>
<td>0.37</td>
</tr>
</tbody>
</table>

The lowest coarse series screw is a \(1\frac{1}{64} \) UNC \times 0.75 in long up to a \(6\frac{3}{32} \) UNC \times 0.75 in long. \textit{Ans.}

8-25 For half of joint, Eq. (8-20): \(t = 20 \text{ mm}, d = 14 \text{ mm}, D = 21 \text{ mm}, \text{ and } E = 207 \text{ GPa} \)

\[
k_i = \frac{0.5774\pi(207)^{14}}{\ln\left[\frac{1.155(20) + 21 - 14}{(21+14)21 - 14}\right]} = 5523 \text{ MN/m}
\]

\[
k_m = \left(\frac{1}{k_i} + \frac{1}{k_1}\right)^{-1} = k_i/2 = \frac{5523}{2} = 2762 \text{ MN/m} \quad \text{\textit{Ans.}}
\]

From Eq. (8-22) with \(l = 40 \text{ mm} \)

\[
k_m = \frac{0.5774\pi(207)^{14}}{2\ln\left[\frac{0.5774(40) + 0.5(14)}{0.5774(40) + 2.5(14)}\right]} = 2762 \text{ MN/m} \quad \text{\textit{Ans.}}
\]

which agrees with the earlier calculation.
For Eq. (8-23), from Table 8-8, \(A = 0.78715, B = 0.62873 \)

\[
k_m = 207(14)(0.78715) \exp\left[0.62873(14)/40\right] = 2843 \text{ MN/m} \quad \text{Ans.}
\]

This is 2.9% higher than the earlier calculations.

8-26 (a) Grip, \(l = 10 \) in. Nut height, \(H = 41/64 \) in (Table A-31).
\(L \geq l + H = 10 + 41/64 = 10.641 \) in. Let \(L = 10.75 \) in.

Table 8-7, \(L_T = 2d + 0.5 = 2(0.75) + 0.5 = 2 \) in, \(l_d = L - L_T = 10.75 - 2 = 8.75 \) in,
\(l_i = l - l_d = 10 - 8.75 = 1.25 \) in

\(A_d = \pi(0.75^2)/4 = 0.4418 \) in\(^2\), \(A_i = 0.373 \) in\(^2\) (Table 8-2)

Eq. (8-17),

\[
k_p = \frac{A_d A_e}{A_d l_i + A_i l_d} = \frac{0.4418(0.373)30}{0.4418(1.25) + 0.373(8.75)} = 1.296 \text{ Mlbf/in} \quad \text{Ans.}
\]

Eq. (4-4), p. 149,

\[
k_m = \frac{A_mE_m}{l} = \frac{(\pi/4)(1.125^2 - 0.75^2)30}{10} = 1.657 \text{ Mlbf/in} \quad \text{Ans.}
\]

Eq. (f), p. 436, \(C = k_b/(k_b + k_m) = 1.296/(1.296 + 1.657) = 0.439 \quad \text{Ans.} \)

(b)

Let: \(N_t = \) no. of turns, \(p = \) pitch of thread (in), \(N = \) no. of threads per in = \(1/p \). Then,

\[
\delta = \delta_b + \delta_m = N_t p = N_t / N \quad (1)
\]

But, \(\delta_b = F_i / k_b \), and, \(\delta_m = F_i / k_m \). Substituting these into Eq. (1) and solving for \(F_i \) gives
\[F_i = \frac{k_b k_m N_i}{k_b + k_m N} \]

\[= \frac{1.296(1.657)10^6}{1.296 + 1.657} = 15 \text{ lbf} \quad \text{Ans.} \]

8-27 Proof for the turn-of-nut equation is given in the solution of Prob. 8-26, Eq. (2), where \(N_t = \theta / 360^\circ \).

The relationship between the turn-of-nut method and the torque-wrench method is as follows.

\[N_t = \left(\frac{k_b + k_m}{k_b k_m} \right) F_i N \quad \text{(turn-of-nut)} \]

\[T = KF_i d \quad \text{(torque-wrench)} \]

Eliminate \(F_i \)

\[N_t = \left(\frac{k_b + k_m}{k_b k_m} \right) \frac{NT}{Kd} = \frac{\theta}{360^\circ} \quad \text{Ans.} \]

8-28 (a) From Ex. 8-4, \(F_i = 14.4 \text{ kip} \), \(k_b = 5.21(10^6) \text{ lbf/in} \), \(k_m = 8.95(10^6) \text{ lbf/in} \)

Eq. (8-27): \(T = kF_i d = 0.2(14.4)(10^3)(5/8) = 1800 \text{ lbf · in} \quad \text{Ans.} \)

From Prob. 8-27,

\[N_t = \left(\frac{k_b + k_m}{k_b k_m} \right) F_i N = \left[\frac{5.21 + 8.95}{5.21(8.95)10^6} \right](14.4)(10^3)11 \]

\[= 0.0481 \text{ turns} = 17.3^\circ \quad \text{Ans.} \]

Bolt group is \((1.5)/(5/8) = 2.4 \text{ diameters} \). Answer is much lower than RB&W recommendations.

8-29 \(C = k_b / (k_b + k_m) = 3/(3+12) = 0.2 \), \(P = P_{\text{total}} / N = 80/6 = 13.33 \text{ kips/bolt} \)

Table 8-2, \(A_i = 0.141 \text{ 9 in}^2 \); Table 8-9, \(S_p = 120 \text{ kpsi} \); Eqs. (8-31) and (8-32), \(F_i = 0.75 A_i S_p = 0.75(0.141 \text{ 9})(120) = 12.77 \text{ kips} \)

(a) From Eq. (8-28), the factor of safety for yielding is

\[n_p = \frac{S_p A_i}{CP + F_i} = \frac{120(0.141 \text{ 9})}{0.2(13.33) + 12.77} = 1.10 \quad \text{Ans.} \]

(b) From Eq. (8-29), the overload factor is
(c) From Eq. (803), the joint separation factor of safety is

\[n_0 = \frac{F_i}{P(1 - C)} = \frac{12.77}{13.33(1 - 0.2)} = 1.20 \quad \text{Ans.} \]

8-30 1/2 – 13 UNC Grade 8 bolt, \(K = 0.20 \)

(a) Proof strength, Table 8-9, \(S_p = 120 \text{ kpsi} \)
 Table 8-2, \(A_t = 0.1419 \text{ in}^2 \)
 Maximum, \(F_i = S_p A_t = 120(0.1419) = 17.0 \text{ kips} \) \(\text{Ans.} \)

(b) From Prob. 8-29, \(C = 0.2, P = 13.33 \text{ kips} \)
 Joint separation, Eq. (8-30) with \(n_0 = 1 \)
 Minimum \(F_i = P(1 - C) = 13.33(1 - 0.2) = 10.66 \text{ kips} \) \(\text{Ans.} \)

(c) \(\bar{F}_i = (17.0 + 10.66)/2 = 13.8 \text{ kips} \)
 Eq. (8-27), \(T = KF_i d = 0.2(13.8)10^3(0.5)/12 = 115 \text{ lbf} \cdot \text{ft} \) \(\text{Ans.} \)

8-31 (a) Table 8-1, \(A_t = 20.1 \text{ mm}^2 \). Table 8-11, \(S_p = 380 \text{ MPa} \).

Eq. (8-31), \(F_i = 0.75 F_p = 0.75 A_t S_p = 0.75(20.1)380(10^{-3}) = 5.73 \text{ kN} \)

Eq. (f), p. 436, \[C = \frac{k_b}{k_b + k_m} = \frac{1}{1 + 2.6} = 0.278 \]

Eq. (8-28) with \(n_p = 1 \),
\[P = \frac{S_p A_t - F_i}{C} = \frac{0.75 S_p A_t}{C} = \frac{0.25(20.1)380(10^{-3})}{0.278} = 6.869 \text{ kN} \]
\[P_{total} = NP = 8(6.869) = 55.0 \text{ kN} \] \(\text{Ans.} \)

(b) Eq. (8-30) with \(n_0 = 1 \),
\[P = \frac{F_i}{1 - C} = \frac{5.73}{1 - 0.278} = 7.94 \text{ kN} \]
\[P_{total} = NP = 8(7.94) = 63.5 \text{ kN} \] \(\text{Ans.} \) Bolt stress would exceed proof strength

8-32 (a) Table 8-2, \(A_t = 0.1419 \text{ in}^2 \). Table 8-9, \(S_p = 120 \text{ kpsi} \).

Eq. (8-31), \(F_i = 0.75 F_p = 0.75 A_t S_p = 0.75(0.1419)120 = 12.77 \text{ kips} \)

Eq. (f), p. 436, \[C = \frac{k_b}{k_b + k_m} = \frac{4}{4 + 12} = 0.25 \]
Eq. (8-28) with \(n_p = 1 \),
\[
P_{\text{total}} = N \left(\frac{S_p A_i - F_i}{C} \right) = \frac{0.25 NS_p A_i}{C}
\]
\[
N = \frac{P_{\text{total}} C}{0.25 S_p A_i} = \frac{80(0.25)}{0.25(120)0.1419} = 4.70
\]
Round to \(N = 5 \) bolts \hspace{1cm} \text{Ans.}

(b) Eq. (8-30) with \(n_0 = 1 \),
\[
P_{\text{total}} = N \left(\frac{F_i}{1 - C} \right)
\]
\[
N = \frac{P_{\text{total}} (1 - C)}{F_i} = \frac{80(1 - 0.25)}{12.77} = 4.70
\]
Round to \(N = 5 \) bolts \hspace{1cm} \text{Ans.}

8-33 Bolts: From Table A-31, the nut height is \(H = 10.8 \) mm. \(L \geq l + H = 40 + 10.8 = 50.8 \) mm. Although Table A-17 indicates to go to 60 mm, 55 mm is readily available

Round up to \(L = 55 \) mm \hspace{1cm} \text{Ans.}

Eq. (8-14): \(L_T = 2d + 6 = 2(12) + 6 = 30 \) mm

Table 8-7: \(l_d = L - L_T = 55 - 30 = 25 \) mm, \(l_i = l - l_d = 40 - 25 = 15 \) mm

\(A_d = \pi (12^2)/4 = 113.1 \) mm\(^2\), Table 8-1: \(A_t = 84.3 \) mm\(^2\)

Eq. (8-17):
\[
k_b = \frac{A_d A_t E}{A_d l_i + A_t l_d} = \frac{113.1(84.3)207}{113.1(15)+84.3(25)} = 518.8 \text{ MN/m}
\]

Members: Steel cyl. head: \(t = 20 \) mm, \(d = 12 \) mm, \(D = 18 \) mm, \(E = 207 \) GPa. Eq. (8-20),
\[
k_1 = \frac{0.5774\pi (207)12}{\ln \left[1.155(20)+18-12 \left(\frac{1}{18+12} \right) \right]} = 4470 \text{ MN/m}
\]

Cast iron: \(t = 20 \) mm, \(d = 12 \) mm, \(D = 18 \) mm, \(E = 100 \) GPa (from Table 8-8). The only difference from \(k_1 \) is the material

\[
k_2 = (100/207)(4470) = 2159 \text{ MN/m}
\]

Eq. (8-18): \(k_m = (1/4470 + 1/2159)^{-1} = 1456 \text{ MN/m} \)
\[C = k_b / (k_b + k_m) = 518.8/(518.8 + 1456) = 0.263 \]

Table 8-11: \(S_p = 650 \) MPa
Assume non-permanent connection. Eqs. (8-31) and (8-32)

\[F_i = 0.75 A_i \quad S_p = 0.75(84.3)(650)10^{-3} = 41.1 \text{ kN} \]

The total external load is \(P_{\text{total}} = p_g A_c \), where \(A_c \) is the diameter of the cylinder which is 100 mm. The external load per bolt is \(P = P_{\text{total}} / N \). Thus

\[P = \left[6\pi \left(100^2\right)/4\right](10^{-3})/10 = 4.712 \text{ kN/bolt} \]

Yielding factor of safety, Eq. (8-28):

\[n_p = \frac{S_p A_i}{CP + F_i} = \frac{650(84.3)10^{-3}}{0.263(4.712) + 41.10} = 1.29 \quad \text{Ans.} \]

Overload factor of safety, Eq. (8-29):

\[n_l = \frac{S_p A_i - F_i}{CP} = \frac{650(84.3)10^{-3} - 41.10}{0.263(4.712)} = 11.1 \quad \text{Ans.} \]

Separation factor of safety, Eq. (8-30):

\[n_0 = \frac{F_i}{P(1-C)} = \frac{41.10}{4.712(1-0.263)} = 11.8 \quad \text{Ans.} \]

8-34 Bolts: Grip, \(l = 1/2 + 5/8 = 1.125 \) in. From Table A-31, the nut height is \(H = 7/16 \) in.
\(L \geq l + H = 1.125 + 7/16 = 1.563 \) in.

Round up to \(L = 1.75 \) in \quad \text{Ans.}

Eq. (8-13):

\[L_T = 2d + 0.25 = 2(0.5) + 0.25 = 1.25 \text{ in} \]

Table 8-7: \(l_d = L - L_T = 1.75 - 1.25 = 0.5 \) in, \(l_t = l - l_d = 1.125 - 0.5 = 0.625 \) in

\[A_d = \pi (0.5^2)/4 = 0.1963 \text{ in}^2, \quad \text{Table 8-2: } A_t = 0.1419 \text{ in}^2 \]

Eq. (8-17):

\[k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{0.1963(0.1419)30}{0.1963(0.625)+0.1419(0.5)} = 4.316 \text{ Mlbf/in} \]
Members: Steel cyl. head: $t = 0.5$ in, $d = 0.5$ in, $D = 0.75$ in, $E = 30$ Mpsi. Eq. (8-20),

$$k_1 = \frac{0.5774 \pi (30)^{0.5}}{\ln \left[\frac{1.155(0.5) + 0.75 - 0.5}{(0.75 + 0.5)}(0.75 + 0.5)\right]} = 33.30 \text{ Mlbf/in}$$

Cast iron: Has two frusta. Midpoint of complete joint is at $(1/2 + 5/8)/2 = 0.5625$ in.

Upper frustum, $t = 0.5625 - 0.5 = 0.0625$ in, $d = 0.5$ in, $D = 0.75 + 2(0.5) \tan 30^\circ = 1.327$ in, $E = 14.5$ Mpsi (from Table 8-8)

Eq. (8-20) $\Rightarrow k_2 = 292.7 \text{ Mlbf/in}$

Lower frustum, $t = 0.5625$ in, $d = 0.5$ in, $D = 0.75$ in, $E = 14.5$ Mpsi

Eq. (8-20) $\Rightarrow k_3 = 15.26 \text{ Mlbf/in}$

Eq. (8-18): $k_m = (1/33.30 + 1/292.7 + 1/15.26)^{-1} = 10.10 \text{ Mlbf/in}$

$$C = k_b / (k_b + k_m) = 4.316/(4.316+10.10) = 0.299$$

Table 8-9: $S_p = 85$ kpsi

Assume non-permanent connection. Eqs. (8-31) and (8-32)

$$F_i = 0.75 A_t, S_p = 0.75(0.1419)(85) = 9.05 \text{ kips}$$

The total external load is $P_{\text{total}} = p_g A_c$, where A_c is the diameter of the cylinder which is 3.5 in. The external load per bolt is $P = P_{\text{total}} / N$. Thus

$$P = [1 500 \pi (3.5^2)/4](10^{-3})/10 = 1.443 \text{ kips/bolt}$$

Yielding factor of safety, Eq. (8-28):

$$n_p = \frac{S_p A_i}{C_p + F_i} = \frac{85(0.1419)}{0.299(1.443)+9.05} = 1.27 \quad \text{Ans.}$$

Overload factor of safety, Eq. (8-29):

$$n_L = \frac{S_p A_i - F_i}{C_p} = \frac{85(0.1419)-9.05}{0.299(1.443)} = 6.98 \quad \text{Ans.}$$

Separation factor of safety, Eq. (8-30):
Bolts: Grip: \(l = 20 + 25 = 45 \text{ mm} \). From Table A-31, the nut height is \(H = 8.4 \text{ mm} \). Although Table A-17 indicates to go to 60 mm, 55 mm is readily available.

Round up to \(L = 55 \text{ mm} \) \(\text{Ans.} \)

Eq. (8-14): \(L_T = 2d + 6 = 2(10) + 6 = 26 \text{ mm} \)

Table 8-7: \(l_d = L - L_T = 55 - 26 = 29 \text{ mm} \), \(l_t = l - l_d = 45 - 29 = 16 \text{ mm} \)

\(A_d = \pi (10^2)/4 = 78.5 \text{ mm}^2 \), Table 8-1: \(A_l = 58.0 \text{ mm}^2 \)

Eq. (8-17):

\[
k_b = \frac{A_d A_l E}{A_d l_t + A_l l_d} = \frac{78.5(58.0)207}{78.5(16) + 58.0(29)} = 320.8 \text{ MN/m}
\]

Members: Steel cyl. head: \(t = 20 \text{ mm} \), \(d = 10 \text{ mm} \), \(D = 15 \text{ mm} \), \(E = 207 \text{ GPa} \). Eq. (8-20),

\[
k_1 = \frac{0.5774 \pi (207)10}{\ln \left[\frac{1.155(20) + 15 - 10}{15 + 10} \right]} = 3503 \text{ MN/m}
\]

Cast iron: Has two frusta. Midpoint of complete joint is at \((20 + 25)/2 = 22.5 \text{ mm}\)

Upper frustum, \(t = 22.5 - 20 = 2.5 \text{ mm} \), \(d = 10 \text{ mm} \), \(D = 15 + 2(20) \tan 30^\circ = 38.09 \text{ mm} \), \(E = 100 \text{ GPa} \) (from Table 8-8),

Eq. (8-20) \(\Rightarrow k_2 = 45 880 \text{ MN/m} \)

Lower frustum, \(t = 22.5 \text{ mm} \), \(d = 10 \text{ mm} \), \(D = 15 \text{ mm} \), \(E = 100 \text{ GPa} \)

Eq. (8-20) \(\Rightarrow k_3 = 1632 \text{ MN/m} \)

Eq. (8-18): \(k_m = (1/3503 + 1/45 880 + 1/1632)^{-1} = 1087 \text{ MN/m} \)

\[C = k_b / (k_b + k_m) = 320.8/(320.8+1087) = 0.228\]

Table 8-11: \(S_p = 830 \text{ MPa} \)

Assume non-permanent connection. Eqs. (8-31) and (8-32)

\[F_i = 0.75 A_l S_p = 0.75(58.0)(830)10^{-3} = 36.1 \text{ kN}\]
The total external load is \(P_{\text{total}} = p_g A_c \), where \(A_c \) is the diameter of the cylinder which is 0.8 m. The external load per bolt is \(P = P_{\text{total}} / N \). Thus

\[
P = \left[550\pi (0.8^2)/4 \right] / 36 = 7.679 \text{ kN/bolt}
\]

Yielding factor of safety, Eq. (8-28):

\[
n_p = \frac{S_p A_i}{CP + F_i} = \frac{830(58.0)10^{-3}}{0.228(7.679) + 36.1} = 1.27 \quad \text{Ans.}
\]

Overload factor of safety, Eq. (8-29):

\[
n_L = \frac{S_p A_i - F_i}{CP} = \frac{830(58.0)10^{-3} - 36.1}{0.228(7.679)} = 6.88 \quad \text{Ans.}
\]

Separation factor of safety, Eq. (8-30):

\[
n_0 = \frac{F_i}{P(1-C)} = \frac{36.1}{7.679(1-0.228)} = 6.09 \quad \text{Ans.}
\]

8-36 Bolts: Grip, \(l = 3/8 + 1/2 = 0.875 \text{ in} \). From Table A-31, the nut height is \(H = 3/8 \text{ in} \).

\[L \geq l + H = 0.875 + 3/8 = 1.25 \text{ in} \]

Let \(L = 1.25 \text{ in} \) \text{ Ans.}

Eq. (8-13): \[L_T = 2d + 0.25 = 2(7/16) + 0.25 = 1.125 \text{ in} \]

Table 8-7: \[l_d = L - L_T = 1.25 - 1.125 = 0.125 \text{ in} , \]

\[l_t = l - l_d = 0.875 - 0.125 = 0.75 \text{ in} \]

\[A_d = \pi (7/16)^2/4 = 0.150 \text{ 3 in}^2 \], Table 8-2: \[A_t = 0.106 \text{ 3 in}^2 \]

Eq. (8-17),

\[k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{0.150 \text{ 3(0.106 3)30}}{0.150 \text{ 3(0.75) + 0.106 \text{ 3(0.125)}}} = 3.804 \text{ Mlb/in} \]

Members: Steel cyl. head: \(t = 0.375 \text{ in} , d = 0.4375 \text{ in} , D = 0.65625 \text{ in} , E = 30 \text{ Mpsi} \). Eq. (8-20),
\[k_i = \frac{0.5774\pi (30)0.4375}{\ln\left[\frac{1.155(0.375) + 0.65625 - 0.4375}{(0.65625 + 0.4375)}\right]} = 31.40 \text{ Mlbf/in} \]

Cast iron: Has two frusta. Midpoint of complete joint is at \((3/8 + 1/2)/2 = 0.4375\) in.
Upper frustum, \(t = 0.4375 - 0.375 = 0.0625\) in, \(d = 0.4375\) in,
\(D = 0.65625 + 2(0.375) \tan 30^\circ = 1.089\) in, \(E = 14.5\) Mpsi (from Table 8-8)
Eq. (8-20) \(\Rightarrow k_2 = 195.5\) Mlbf/in
Lower frustum, \(t = 0.4375\) in, \(d = 0.4375\) in, \(D = 0.65625\) in, \(E = 14.5\) Mpsi
Eq. (8-20) \(\Rightarrow k_3 = 14.08\) Mlbf/in
Eq. (8-18): \(k_m = (1/31.40 + 1/195.5 + 1/14.08)^{-1} = 9.261\) Mlbf/in
\[C = \frac{k_b}{k_b + k_m} = \frac{3.804}{(3.804 + 9.261)} = 0.291 \]
Table 8-9: \(S_p = 120\) kpsi
Assume non-permanent connection. Eqs. (8-31) and (8-32)
\[F_i = 0.75 A_t, S_p = 0.75(0.1063)(120) = 9.57\text{ kips} \]
The total external load is \(P_{\text{total}} = p_g A_c\), where \(A_c\) is the diameter of the cylinder which is 3.25 in. The external load per bolt is \(P = P_{\text{total}} / N\). Thus
\[P = \left[1 200\pi (3.25^2)/4\right](10^{-3})/8 = 1.244\text{ kips/bolt} \]
Yielding factor of safety, Eq. (8-28):
\[n_p = \frac{S_p A_t}{CP + F_i} = \frac{120(0.1063)}{0.291(1.244) + 9.57} = 1.28 \quad \text{Ans.} \]
Overload factor of safety, Eq. (8-29):
\[n_L = \frac{S_p A_t - F_i}{CP} = \frac{120(0.1063) - 9.57}{0.291(1.244)} = 8.80 \quad \text{Ans.} \]
Separation factor of safety, Eq. (8-30):
\[
n_0 = \frac{F_i}{P(1-C)} = \frac{9.57}{1.244(1-0.291)} = 10.9 \quad \text{Ans.}
\]

8-37 From Table 8-7, \(h = t_1 = 20 \) mm
For \(t_2 > d, l = h + d/2 = 20 + 12/2 = 26 \) mm
\(L \geq h + 1.5d = 20 + 1.5(12) = 38 \) mm. Round up to \(L = 40 \) mm
\(L_T = 2d + 6 = 2(12) + 6 = 30 \) mm
\(l_d = L - L_T = 40 - 20 = 10 \) mm
\(l_t = l - l_d = 26 - 10 = 16 \) mm

From Table 8-1, \(A_t = 84.3 \) mm\(^2\). \(A_d = \pi (12^2)/4 = 113.1 \) mm\(^2\)
Eq. (8-17),
\[
k_b = \frac{A_d A_e}{A_t A_t + A_t d} = \frac{113.1(84.3)207}{113.1(16) + 84.3(10)} = 744.0 \text{ MN/m}
\]
Similar to Fig. 8-21, we have three frusta.
Top frusta, steel: \(t = l/2 = 13 \) mm, \(d = 12 \) mm, \(D = 18 \) mm, \(E = 207 \) GPa. Eq. (8-20)
\[
k_1 = \frac{0.5774 \pi (207)12}{\ln \left[\frac{1.155(13)+18-12}{18+12} \cdot \frac{18+12}{18-12} \right]} = 5316 \text{ MN/m}
\]
Middle frusta, steel: \(t = 20 - 13 = 7 \) mm, \(d = 12 \) mm, \(D = 18 + 2(13 - 7) \tan 30^\circ = 24.93 \) mm, \(E = 207 \) GPa. Eq. (8-20) \(\Rightarrow k_2 = 15660 \) MN/m

Lower frusta, cast iron: \(t = 26 - 20 = 6 \) mm, \(d = 12 \) mm, \(D = 18 \) mm, \(E = 100 \) GPa (see Table 8-8). Eq. (8-20) \(\Rightarrow k_3 = 3887 \) MN/m

Eq. (8-18), \(k_m = (1/5 316 + 1/15 660 + 1/3 887)^{-1} = 1964 \) MN/m

\[
C = k_b / (k_b + k_m) = 744.0/(744.0 + 1964) = 0.275
\]

Table 8-11: \(S_p = 650 \) MPa. From Prob. 8-33, \(P = 4.712 \) kN. Assume a non-permanent connection. Eqs. (8-31) and (8-32),
\[
F_i = 0.75 A_t S_p = 0.75(84.3)(650)10^{-3} = 41.1 \text{ kN}
\]

Yielding factor of safety, Eq. (8-28)
\[
n_p = \frac{S_p A_t}{CP + F_i} = \frac{650(84.3)10^{-3}}{0.275(4.712) + 41.1} = 1.29 \quad \text{Ans.}
\]

Overload factor of safety, Eq. (8-29)
\[n_L = \frac{S_p A_i - F_i}{C P} = \frac{650(84.3)10^{-3} - 41.1}{0.275(4.712)} = 10.7 \quad \text{Ans.} \]

Separation factor of safety, Eq. (8-30)

\[n_0 = \frac{F_i}{P(1-C)} = \frac{41.1}{4.712(1-0.275)} = 12.0 \quad \text{Ans.} \]

8-38 From Table 8-7, \(h = t_1 = 0.5 \) in
For \(t_2 > d, l = h + d/2 = 0.5 + 0.5/2 = 0.75 \) in
\(L \geq h + 1.5d = 0.5 + 1.5(0.5) = 1.25 \) in. Let \(l = 1.25 \) in
\(L_T = 2d + 0.25 = 2(0.5) + 0.25 = 1.25 \) in. All threaded.
From Table 8-1, \(A_t = 0.1419 \) in². The bolt stiffness is \(k_b = A_t E / l = 0.1419(30)/0.75 = 5.676 \) Mlb/in
Similar to Fig. 8-21, we have three frusta.
Top frusta, steel: \(t = l/2 = 0.375 \) in, \(d = 0.5 \) in, \(D = 0.75 \) in, \(E = 30 \) Mpsi
\[k_1 = \frac{0.5774\pi(30)0.5}{\ln\left[\frac{1.155(0.375) + 0.75 - 0.5}{(0.75+0.5)}\right] \frac{1.155(0.375) + 0.75 + 0.5}{(0.75-0.5)}} = 38.45 \text{ Mlb/in} \]

Middle frusta, steel: \(t = 0.5 - 0.375 = 0.125 \) in, \(d = 0.5 \) in,
\(D = 0.75 + 2(0.75 - 0.5) \tan 30^\circ = 1.039 \) in, \(E = 30 \) Mpsi.
Eq. (8-20) \(\Rightarrow \ k_2 = 184.3 \) Mlb/in

Lower frusta, cast iron: \(t = 0.75 - 0.5 = 0.25 \) in, \(d = 0.5 \) in, \(D = 0.75 \) in, \(E = 14.5 \) Mpsi.
Eq. (8-20) \(\Rightarrow \ k_3 = 23.49 \) Mlb/in

Eq. (8-18), \[k_m = (1/38.45 + 1/184.3 + 1/23.49)^{-1} = 13.51 \text{ Mlb/in} \]
\[C = k_b / (k_b + k_m) = 5.676 / (5.676 + 13.51) = 0.296 \]

Table 8-9, \(S_p = 85 \) kpsi. From Prob. 8-34, \(P = 1.443 \) kips/bolt. Assume a non-permanent connection. Eqs. (8-31) and (8-32),
\[F_i = 0.75 A_t S_p = 0.75(0.1419)(85) = 9.05 \text{ kips} \]

Yielding factor of safety, Eq. (8-28)
\[n_p = \frac{S_p A_i}{C P + F_i} = \frac{85(0.1419)}{0.296(1.443) + 9.05} = 1.27 \quad \text{Ans.} \]

Overload factor of safety, Eq. (8-29)
\[
n_L = \frac{S_p A_i - F_i}{CP} = \frac{85(0.1419) - 9.05}{0.296(1.443)} = 7.05 \quad \text{Ans.}
\]

Separation factor of safety, Eq. (8-30)
\[
n_0 = \frac{F_i}{P(1-C)} = \frac{9.05}{1.443(1-0.296)} = 8.91 \quad \text{Ans.}
\]

8-39 From Table 8-7, \(h = t_1 = 20 \text{ mm} \)
For \(t_2 > d \), \(l = h + d / 2 = 20 + 10/2 = 25 \text{ mm} \)
\(L \geq h + 1.5d = 20 + 1.5(10) = 35 \text{ mm} \). Let \(L = 35 \text{ mm} \)
\(L_T = 2d + 6 = 2(10) + 6 = 26 \text{ mm} \)
\(l_d = L - L_T = 35 - 26 = 9 \text{ mm} \)
\(l_t = l - l_d = 25 - 9 = 16 \text{ mm} \)

From Table 8-1, \(A_t = 58.0 \text{ mm}^2 \). \(A_d = \pi (10^2)/4 = 78.5 \text{ mm}^2 \)
Eq. (8-17),
\[
k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{78.5(58.0)207}{78.5(16) + 58.0(9)} = 530.1 \text{ MN/m}
\]
Similar to Fig. 8-21, we have three frusta.
Top frusta, steel: \(t = l / 2 = 12.5 \text{ mm}, d = 10 \text{ mm}, D = 15 \text{ mm}, E = 207 \text{ GPa} \).
Eq. (8-20)
\[
k_1 = \frac{0.5774 \pi (207)^{10}}{\ln \left[\frac{1.155(12.5) + 15 - 10}{15 + 10} \right]} = 4163 \text{ MN/m}
\]
Mid frusta, steel: \(t = 20 - 12.5 = 7.5 \text{ mm}, d = 10 \text{ mm}, D = 15 + 2(12.5 - 7.5) \tan 30^\circ = 20.77 \text{ mm}, E = 207 \text{ GPa} \).
Eq. (8-20) \(\Rightarrow k_2 = 10975 \text{ MN/m} \)

Lower frusta, cast iron: \(t = 25 - 20 = 5 \text{ mm}, d = 10 \text{ mm}, D = 15 \text{ mm}, E = 100 \text{ GPa} \) (see Table 8-8). Eq. (8-20) \(\Rightarrow k_3 = 3239 \text{ MN/m} \)

Eq. (8-18), \(k_m = (1/4 163 + 1/10 975 + 1/3 239)^{-1} = 1562 \text{ MN/m} \)
\[
C = k_b / (k_b + k_m) = 530.1/(530.1 + 1562) = 0.253
\]
Table 8-11: \(S_p = 830 \text{ MPa} \). From Prob. 8-35, \(P = 7.679 \text{ kN/bolt} \). Assume a non-permanent connection. Eqs. (8-31) and (8-32),
\[
F_i = 0.75 A_t S_p = 0.75(58.0)(830)10^{-3} = 36.1 \text{ kN}
\]
Yielding factor of safety, Eq. (8-28)
\[n_p = \frac{S_p A_t}{CP + F_i} = \frac{830(58.0)10^{-3}}{0.253(7.679) + 36.1} = 1.27 \quad \text{Ans.} \]

Overload factor of safety, Eq. (8-29)

\[n_s = \frac{S_p A_t - F_i}{CP} = \frac{830(58.0)10^{-3} - 36.1}{0.253(7.679)} = 6.20 \quad \text{Ans.} \]

Separation factor of safety, Eq. (8-30)

\[n_0 = \frac{F_i}{P(1-C)} = \frac{36.1}{7.679(1-0.253)} = 6.29 \quad \text{Ans.} \]

8-40 From Table 8-7, \(h = t_1 = 0.375 \) in

For \(t_2 > d \), \(l = h + d/2 = 0.375 + 0.4375/2 = 0.59375 \) in

\(L \geq h + 1.5 d = 0.375 + 1.5(0.4375) = 1.031 \) in. Round up to \(L = 1.25 \) in

\(L_T = 2d + 0.25 = 2(0.4375) + 0.25 = 1.125 \) in

\(l_d = L - L_T = 1.25 - 1.125 = 0.125 \)

\(l_t = l - l_d = 0.59375 - 0.125 = 0.46875 \) in

\(A_d = \pi(7/16)^2/4 = 0.150 \) in\(^2\), Table 8-2: \(A_t = 0.106 \) in\(^2\)

Eq. (8-17),

\[k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d} = \frac{0.150 \cdot 0.106}{0.150 \cdot (0.46875) + 0.106 \cdot (0.125)} = 5.724 \text{ Mlb/in} \]

Similar to Fig. 8-21, we have three frusta.

Top frusta, steel: \(t = l/2 = 0.296875 \) in, \(d = 0.4375 \) in, \(D = 0.65625 \) in, \(E = 30 \) Mpsi

\[k_1 = \frac{0.5774 \pi(30)0.4375}{\ln \left[1.155(0.296875) + 0.656255 - 0.4375 \right] (0.75 + 0.656255)} = 35.52 \text{ Mlb/in} \]

Middle frusta, steel: \(t = 0.375 - 0.296875 = 0.078125 \) in, \(d = 0.4375 \) in, \(D = 0.65625 + 2(0.59375 - 0.375) \tan 30^\circ = 0.9088 \) in, \(E = 30 \) Mpsi

Eq. (8-20) \(\Rightarrow k_2 = 215.8 \text{ Mlb/in} \)

Lower frusta, cast iron: \(t = 0.59375 - 0.375 = 0.21875 \) in, \(d = 0.4375 \) in, \(D = 0.65625 \) in, \(E = 14.5 \) Mpsi. Eq. (8-20) \(\Rightarrow k_3 = 20.55 \text{ Mlb/in} \)

Eq. (8-18),

\[k_m = (1/35.52 + 1/215.8 + 1/20.55)^{-1} = 12.28 \text{ Mlb/in} \]

\[C = k_b / (k_b + k_m) = 5.724/(5.724 + 12.28) = 0.318 \]
Table 8-9, $S_p = 120$ kpsi. From Prob. 8-34, $P = 1.244$ kips/bolt. Assume a non-permanent connection. Eqs. (8-31) and (8-32),
\[F_i = 0.75 A_t S_p = 0.75(0.1063)(120) = 9.57 \text{ kips} \]
Yielding factor of safety, Eq. (8-28)
\[n_p = \frac{S_p A_t}{CP + F_i} = \frac{120(0.1063)}{0.318(1.244) + 9.57} = 1.28 \quad \text{Ans.} \]
Overload factor of safety, Eq. (8-29)
\[n_L = \frac{S_p A_t - F_i}{CP} = \frac{120(0.1063) - 9.57}{0.318(1.244)} = 8.05 \quad \text{Ans.} \]
Separation factor of safety, Eq. (8-30)
\[n_0 = \frac{F_i}{P(1 - C)} = \frac{9.57}{1.244(1 - 0.318)} = 11.3 \quad \text{Ans.} \]

8-41 This is a design problem and there is no closed-form solution path or a unique solution. What is presented here is one possible iterative approach. We will demonstrate this with an example.

1. Select the diameter, d. For this example, let $d = 10$ mm. Using Eq. (8-20) on members, and combining using Eq. (8-18), yields $k_m = 1141$ MN/m (see Prob. 8-33 for method of calculation).

2. Look up the nut height in Table A-31. For the example, $H = 8.4$ mm. From this, L is rounded up from the calculation of $l + H = 40 + 8.4 = 48.4$ mm to 50 mm. Next, calculations are made for $L_T = 2(10) + 6 = 26$ mm, $l_d = 50 - 26 = 24$ mm, $l_t = 40 - 24 = 16$ mm. From step 1, $A_d = \pi (10^2)/4 = 78.54$ mm2. Next, from Table 8-1, $A_t = 78.54$ mm2. From Eq. (8-17), $k_b = 356$ MN/m. Finally, from Eq. (e), p. 421, $C = 0.238$.

3. From Prob. 8-33, the bolt circle diameter is $E = 200$ mm. Substituting this for D_b in Eq. (8-34), the number of bolts are
\[N = \frac{\pi D_b}{4d} = \frac{\pi (200)}{4(10)} = 15.7 \]
Rounding this up gives $N = 16$.

4. Next, select a grade bolt. Based on the solution to Prob. 8-33, the strength of ISO 9.8 was so high to give very large factors of safety for overload and separation. Try ISO 4.6
with \(S_p = 225 \text{ MPa} \). From Eqs. (8-31) and (8-32) for a non-permanent connection, \(F_i = 9.79 \text{ kN} \).

5. The external load requirement per bolt is \(P = 1.15 p_g A_c/N \), where from Prob 8-33, \(p_g = 6 \text{ MPa} \), and \(A_c = \pi (100^2)/4 \). This gives \(P = 3.39 \text{ kN/bolt} \).

6. Using Eqs. (8-28) to (8-30) yield \(n_p = 1.23 \), \(n_L = 4.05 \), and \(n_0 = 3.79 \).

Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables for the tables used from the text. The results for four bolt sizes are shown below. The dimension of each term is consistent with the example given above.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(k_m)</th>
<th>(H)</th>
<th>(L)</th>
<th>(L_T)</th>
<th>(l_d)</th>
<th>(l_t)</th>
<th>(A_d)</th>
<th>(A_t)</th>
<th>(k_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>854</td>
<td>6.8</td>
<td>50</td>
<td>22</td>
<td>28</td>
<td>12</td>
<td>50.26</td>
<td>36.6</td>
<td>233.9</td>
</tr>
<tr>
<td>10</td>
<td>1141</td>
<td>8.4</td>
<td>50</td>
<td>26</td>
<td>24</td>
<td>16</td>
<td>78.54</td>
<td>58</td>
<td>356</td>
</tr>
<tr>
<td>12</td>
<td>1456</td>
<td>10.8</td>
<td>55</td>
<td>30</td>
<td>25</td>
<td>15</td>
<td>113.1</td>
<td>84.3</td>
<td>518.8</td>
</tr>
<tr>
<td>14</td>
<td>1950</td>
<td>12.8</td>
<td>55</td>
<td>34</td>
<td>21</td>
<td>19</td>
<td>153.9</td>
<td>115</td>
<td>686.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d)</th>
<th>(C)</th>
<th>(N)</th>
<th>(S_p)</th>
<th>(F_i)</th>
<th>(P)</th>
<th>(n_p)</th>
<th>(n_L)</th>
<th>(n_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.215</td>
<td>20</td>
<td>225</td>
<td>6.18</td>
<td>2.71</td>
<td>1.22</td>
<td>3.53</td>
<td>2.90</td>
</tr>
<tr>
<td>10</td>
<td>0.238</td>
<td>16</td>
<td>225</td>
<td>9.79</td>
<td>3.39</td>
<td>1.23</td>
<td>4.05</td>
<td>3.79</td>
</tr>
<tr>
<td>12</td>
<td>0.263</td>
<td>13*</td>
<td>225</td>
<td>14.23</td>
<td>4.17</td>
<td>1.24</td>
<td>4.33</td>
<td>4.63</td>
</tr>
<tr>
<td>14</td>
<td>0.276</td>
<td>12</td>
<td>225</td>
<td>19.41</td>
<td>4.52</td>
<td>1.25</td>
<td>5.19</td>
<td>5.94</td>
</tr>
</tbody>
</table>

*Rounded down from 13.08997, so spacing is slightly greater than four diameters.

Any one of the solutions is acceptable. A decision-maker might be cost such as \(N \times \text{cost/bolt} \), and/or \(N \times \text{cost per hole} \), etc.

8-42 This is a design problem and there is no closed-form solution path or a unique solution. What is presented here is one possible iterative approach. We will demonstrate this with an example.

1. Select the diameter, \(d \). For this example, let \(d = 0.5 \) in. Using Eq. (8-20) on three frusta (see Prob. 8-34 solution), and combining using Eq. (8-19), yields \(k_m = 10.10 \text{ Mlbf/in} \).

2. Look up the nut height in Table A-31. For the example, \(H = 0.4375 \) in. From this, \(L \) is rounded up from the calculation of \(l + H = 1.125 + 0.4375 = 1.5625 \) in to 1.75 in. Next, calculations are made for \(L_T = 2(0.5) + 0.25 = 1.25 \) in, \(l_d = 1.75 – 1.25 = 0.5 \) in, \(l_t = 1.125 – 0.5 = 0.625 \) in. From step 1, \(A_d = \pi (0.5^2)/4 = 0.1963 \) in\(^2 \). Next, from Table 8-1, \(A_t = 0.1419 \) in\(^2 \). From Eq. (8-17), \(k_b = 4.316 \text{ Mlbf/in} \). Finally, from Eq. (e), p. 421, \(C = 0.299 \).

3. From Prob. 8-34, the bolt circle diameter is \(E = 6 \) in. Substituting this for \(D_b \) in Eq. (8-34), for the number of bolts.
\[N = \frac{\pi D_b}{4d} = \frac{\pi (6)}{4(0.5)} = 9.425 \]

Rounding this up gives \(N = 10 \).

4. Next, select a grade bolt. Based on the solution to Prob. 8-34, the strength of SAE grade 5 was adequate. Use this with \(S_p = 85 \text{ kpsi} \). From Eqs. (8-31) and (8-32) for a non-permanent connection, \(F_i = 9.046 \text{ kips} \).

5. The external load requirement per bolt is \(P = 1.15 p_g A_c/N \), where from Prob 8-34, \(p_g = 1500 \text{ psi} \), and \(A_c = \pi (3.5^2)/4 \). This gives \(P = 1.660 \text{ kips/bolt} \).

6. Using Eqs. (8-28) to (8-30) yield \(n_p = 1.26 \), \(n_L = 6.07 \), and \(n_0 = 7.78 \).

<table>
<thead>
<tr>
<th>(d)</th>
<th>(k_m)</th>
<th>(H)</th>
<th>(L)</th>
<th>(L_T)</th>
<th>(l_d)</th>
<th>(l_t)</th>
<th>(A_d)</th>
<th>(A_t)</th>
<th>(k_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>6.75</td>
<td>0.3281</td>
<td>1.5</td>
<td>1</td>
<td>0.5</td>
<td>0.625</td>
<td>0.1104</td>
<td>0.0775</td>
<td>2.383</td>
</tr>
<tr>
<td>0.4375</td>
<td>9.17</td>
<td>0.375</td>
<td>1.5</td>
<td>1.125</td>
<td>0.375</td>
<td>0.75</td>
<td>0.1503</td>
<td>0.1063</td>
<td>3.141</td>
</tr>
<tr>
<td>0.5</td>
<td>10.10</td>
<td>0.4375</td>
<td>1.75</td>
<td>1.25</td>
<td>0.5</td>
<td>0.625</td>
<td>0.1963</td>
<td>0.1419</td>
<td>4.316</td>
</tr>
<tr>
<td>0.5625</td>
<td>11.98</td>
<td>0.4844</td>
<td>1.75</td>
<td>1.375</td>
<td>0.375</td>
<td>0.75</td>
<td>0.2485</td>
<td>0.182</td>
<td>5.329</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d)</th>
<th>(C)</th>
<th>(N)</th>
<th>(S_p)</th>
<th>(F_i)</th>
<th>(P)</th>
<th>(n_p)</th>
<th>(n_L)</th>
<th>(n_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>0.261</td>
<td>13</td>
<td>85</td>
<td>4.941</td>
<td>1.277</td>
<td>1.25</td>
<td>4.95</td>
<td>5.24</td>
</tr>
<tr>
<td>0.4375</td>
<td>0.273</td>
<td>11</td>
<td>85</td>
<td>6.777</td>
<td>1.509</td>
<td>1.26</td>
<td>5.48</td>
<td>6.18</td>
</tr>
<tr>
<td>0.5</td>
<td>0.299</td>
<td>10</td>
<td>85</td>
<td>9.046</td>
<td>1.660</td>
<td>1.26</td>
<td>6.07</td>
<td>7.78</td>
</tr>
<tr>
<td>0.5625</td>
<td>0.308</td>
<td>9</td>
<td>85</td>
<td>11.6</td>
<td>1.844</td>
<td>1.27</td>
<td>6.81</td>
<td>9.09</td>
</tr>
</tbody>
</table>

Any one of the solutions is acceptable. A decision-maker might be cost such as \(N \times \text{cost/bolt} \), and/or \(N \times \text{cost per hole} \), etc.

8-43 This is a design problem and there is no closed-form solution path or a unique solution. What is presented here is one possible iterative approach. We will demonstrate this with an example.

1. Select the diameter, \(d \). For this example, let \(d = 10 \text{ mm} \). Using Eq. (8-20) on three frusta (see Prob. 8-35 solution), and combining using Eq. (8-19), yields \(k_m = 1087 \text{ MN/m} \).

2. Look up the nut height in Table A-31. For the example, \(H = 8.4 \text{ mm} \). From this, \(L \) is rounded up from the calculation of \(l + H = 45 + 8.4 = 53.4 \text{ mm} \) to 55 mm. Next, calculations are made for \(L_T = 2(10) + 6 = 26 \text{ mm} \), \(l_d = 55 - 26 = 29 \text{ mm} \), \(l_t = 45 - 29 = 16 \text{ mm} \). From step 1, \(A_d = \pi (10^2)/4 = 78.54 \text{ mm}^2 \). Next, from Table 8-1, \(A_t = 58.0 \text{ mm}^2 \). From Eq. (8-17), \(k_b = 320.9 \text{ MN/m} \). Finally, from Eq. (e), p. 421, \(C = 0.228 \).

3. From Prob. 8-35, the bolt circle diameter is \(E = 1000 \text{ mm} \). Substituting this for \(D_b \) in Eq. (8-34), for the number of bolts
N = \pi D_n / 4d = \pi (1000) / 4(10) = 78.5

Rounding this up gives N = 79. A rather large number, since the bolt circle diameter, E is so large. Try larger bolts.

4. Next, select a grade bolt. Based on the solution to Prob. 8-35, the strength of ISO 9.8 was so high to give very large factors of safety for overload and separation. Try ISO 5.8 with \(S_p = 380 \text{ MPa} \). From Eqs. (8-31) and (8-32) for a non-permanent connection, \(F_i = 16.53 \text{ kN} \).

5. The external load requirement per bolt is \(P = 1.15 p_g A_c / N \), where from Prob 8-35, \(p_g = 0.550 \text{ MPa} \), and \(A_c = \pi (800^2) / 4 \). This gives \(P = 4.024 \text{ kN/bolt} \).

6. Using Eqs. (8-28) to (8-30) yield \(n_p = 1.26 \), \(n_L = 6.01 \), and \(n_0 = 5.32 \).

Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables for the tables used from the text. The results for three bolt sizes are shown below. The dimension of each term is consistent with the example given above.

<table>
<thead>
<tr>
<th>d</th>
<th>km</th>
<th>H</th>
<th>L</th>
<th>L_T</th>
<th>l_d</th>
<th>l_t</th>
<th>A_d</th>
<th>A_L</th>
<th>k_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1087</td>
<td>8.4</td>
<td>55</td>
<td>26</td>
<td>29</td>
<td>16</td>
<td>78.54</td>
<td>58</td>
<td>320.9</td>
</tr>
<tr>
<td>20</td>
<td>3055</td>
<td>18</td>
<td>65</td>
<td>46</td>
<td>19</td>
<td>26</td>
<td>314.2</td>
<td>245</td>
<td>1242</td>
</tr>
<tr>
<td>36</td>
<td>6725</td>
<td>31</td>
<td>80</td>
<td>78</td>
<td>2</td>
<td>43</td>
<td>1018</td>
<td>817</td>
<td>3791</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>C</th>
<th>N</th>
<th>S_p</th>
<th>F_i</th>
<th>P</th>
<th>n_p</th>
<th>n_L</th>
<th>n_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.228</td>
<td>79</td>
<td>380</td>
<td>16.53</td>
<td>4.024</td>
<td>1.26</td>
<td>6.01</td>
<td>5.32</td>
</tr>
<tr>
<td>20</td>
<td>0.308</td>
<td>40</td>
<td>380</td>
<td>69.83</td>
<td>7.948</td>
<td>1.29</td>
<td>9.5</td>
<td>12.7</td>
</tr>
<tr>
<td>36</td>
<td>0.361</td>
<td>22</td>
<td>380</td>
<td>232.8</td>
<td>14.45</td>
<td>1.3</td>
<td>14.9</td>
<td>25.2</td>
</tr>
</tbody>
</table>

A large range is presented here. Any one of the solutions is acceptable. A decision-maker might be cost such as \(N \times \text{cost/bolt} \), and/or \(N \times \text{cost per hole} \), etc.

8-44 This is a design problem and there is no closed-form solution path or a unique solution. What is presented here is one possible iterative approach. We will demonstrate this with an example.

1. Select the diameter, \(d \). For this example, let \(d = 0.375 \text{ in} \). Using Eq. (8-20) on three frusta (see Prob. 8-36 solution), and combining using Eq. (8-19), yields \(k_m = 7.42 \text{ Mlbf/in} \).

2. Look up the nut height in Table A-31. For the example, \(H = 0.3281 \text{ in} \). From this, \(L \geq l + H = 0.875 + 0.3281 = 1.2031 \text{ in} \). Rounding up, \(L = 1.25 \text{ in} \). Next, calculations are made for \(L_T = 2(0.375) + 0.25 = 1 \text{ in} \), \(l_d = 1.25 - 1 = 0.25 \text{ in} \), \(l_t = 0.875 - 0.25 = 0.625 \text{ in} \).
From step 1, \(A_d = \pi (0.375^2)/4 = 0.1104 \text{ in}^2 \). Next, from Table 8-1, \(A_t = 0.0775 \text{ in}^2 \). From Eq. (8-17), \(k_b = 2.905 \text{ Mlb/in} \). Finally, from Eq. (e), p. 421, \(C = 0.263 \).

3. From Prob. 8-36, the bolt circle diameter is \(E = 6 \) in. Substituting this for \(D_b \) in Eq. (8-34), for the number of bolts

\[
N = \frac{\pi D_b}{4d} = \frac{\pi (6)}{4(0.375)} = 12.6
\]

Rounding this up gives \(N = 13 \).

4. Next, select a grade bolt. Based on the solution to Prob. 8-36, the strength of SAE grade 8 seemed high for overload and separation. Try SAE grade 5 with \(S_p = 85 \text{ kpsi} \). From Eqs. (8-31) and (8-32) for a non-permanent connection, \(F_i = 4.941 \text{ kips} \).

5. The external load requirement per bolt is \(P = 1.15 p_g A_c/N \), where from Prob 8-34, \(p_g = 1200 \text{ psi} \), and \(A_c = \pi (3.25^2)/4 \). This gives \(P = 0.881 \text{ kips/bolt} \).

6. Using Eqs. (8-28) to (8-30) yield \(n_p = 1.27 \), \(n_L = 6.65 \), and \(n_0 = 7.81 \).

Steps 1 - 6 can be easily implemented on a spreadsheet with lookup tables for the tables used from the text. For this solution we only looked at one bolt size, \(\frac{3}{8} - 16 \), but evaluated changing the bolt grade. The results for four bolt grades are shown below. The dimension of each term is consistent with the example given above.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(k_m)</th>
<th>(H)</th>
<th>(L)</th>
<th>(L_T)</th>
<th>(l_d)</th>
<th>(l_t)</th>
<th>(A_d)</th>
<th>(A_t)</th>
<th>(k_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>7.42</td>
<td>0.3281</td>
<td>1.25</td>
<td>1</td>
<td>0.25</td>
<td>0.625</td>
<td>0.1104</td>
<td>0.0775</td>
<td>2.905</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d)</th>
<th>(C)</th>
<th>(N)</th>
<th>SAE grade</th>
<th>(S_p)</th>
<th>(F_i)</th>
<th>(P)</th>
<th>(n_p)</th>
<th>(n_L)</th>
<th>(n_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.375</td>
<td>0.281</td>
<td>13</td>
<td>1</td>
<td>33</td>
<td>1.918</td>
<td>0.881</td>
<td>1.18</td>
<td>2.58</td>
<td>3.03</td>
</tr>
<tr>
<td>0.375</td>
<td>0.281</td>
<td>13</td>
<td>2</td>
<td>55</td>
<td>3.197</td>
<td>0.881</td>
<td>1.24</td>
<td>4.30</td>
<td>5.05</td>
</tr>
<tr>
<td>0.375</td>
<td>0.281</td>
<td>13</td>
<td>4</td>
<td>65</td>
<td>3.778</td>
<td>0.881</td>
<td>1.25</td>
<td>5.08</td>
<td>5.97</td>
</tr>
<tr>
<td>0.375</td>
<td>0.281</td>
<td>13</td>
<td>5</td>
<td>85</td>
<td>4.941</td>
<td>0.881</td>
<td>1.27</td>
<td>6.65</td>
<td>7.81</td>
</tr>
</tbody>
</table>

Note that changing the bolt grade only affects \(S_p \), \(F_i \), \(n_p \), \(n_L \), and \(n_0 \). Any one of the solutions is acceptable, especially the lowest grade bolt.

8-45 (a) \(F'_k = RF'_{h,max} \sin \theta \)

Half of the external moment is contributed by the line load in the interval \(0 \leq \theta \leq \pi \)
\[\frac{M}{2} = \int_0^\pi F' R^2 \sin \theta \, d\theta = \int_0^\pi F'_{b,\text{max}} R^2 \sin^2 \theta \, d\theta \]

\[\frac{M}{2} = \frac{\pi}{2} F'_{b,\text{max}} R^2 \]

from which \(F'_{b,\text{max}} = \frac{M}{\pi R^2} \)

\[F_{\text{max}} = \int_{\phi_1}^{\phi_2} F'_{b} R \sin \theta \, d\theta = \frac{M}{\pi R^2} \int_{\phi_1}^{\phi_2} R \sin \theta \, d\theta = \frac{M}{\pi R} \left(\cos \phi_1 - \cos \phi_2 \right) \]

Noting \(\phi_1 = 75^\circ, \phi_2 = 105^\circ \),

\[F_{\text{max}} = \frac{12 \, 000}{\pi (8/2)} \left(\cos 75^\circ - \cos 105^\circ \right) = 494 \text{ lbf} \quad \text{Ans.} \]

(b) \[F_{\text{max}} = F'_{b,\text{max}} R \Delta \phi = \frac{M}{\pi R^2} (R) \left(\frac{2\pi}{N} \right) = \frac{2M}{RN} \]

\[F_{\text{max}} = \frac{2(12 \, 000)}{(8/2)(12)} = 500 \text{ lbf} \quad \text{Ans.} \]

(c) \(F = F_{\text{max}} \sin \theta \)

\[M = 2 \, F_{\text{max}} R \left[(1) \sin^2 90^\circ + 2 \sin^2 60^\circ + 2 \sin^2 30^\circ + (1) \sin^2 0 \right] = 6F_{\text{max}}R \]

from which,

\[F_{\text{max}} = \frac{M}{6R} = \frac{12 \, 000}{6(8/2)} = 500 \text{ lbf} \quad \text{Ans.} \]

The simple general equation resulted from part (b)

\[F_{\text{max}} = \frac{2M}{RN} \]

8-46

(a) From Table 8-11, \(S_p = 600 \text{ MPa} \). From Table 8-1, \(A_t = 353 \text{ mm}^2 \).

Eq. (8-31): \(F_i = 0.9A_tS_p = 0.9(353)(600)(10^{-3}) = 190.6 \text{ kN} \)

Table 8-15: \(K = 0.18 \)

Eq. (8-27): \(T = KF_i d = 0.18(190.6)(24) = 823 \text{ N} \cdot \text{m} \quad \text{Ans.} \)
(b) Washers: \(t = 4.6 \text{ mm}, d = 24 \text{ mm}, D = 1.5(24) = 36 \text{ mm}, E = 207 \text{ GPa} \).

Eq. (8-20),

\[
k_1 = \frac{0.5774 \pi (207) 24}{\ln \left[\frac{1.155(4.6) + 36 - 24}{36 + 24} \right]} = 31\,990 \text{ MN/m}
\]

Cast iron: \(t = 20 \text{ mm}, d = 24 \text{ mm}, D = 36 + 2(4.6) \tan 30^\circ = 41.31 \text{ mm}, E = 135 \text{ GPa} \).

Eq. (8-20) \(\Rightarrow k_2 = 10\,785 \text{ MN/m} \)

Steel joist: \(t = 20 \text{ mm}, d = 24 \text{ mm}, D = 41.31 \text{ mm}, E = 207 \text{ GPa} \).

Eq. (8-20) \(\Rightarrow k_3 = 16\,537 \text{ MN/m} \)

Eq. (8-18): \(k_m = (2 / 31\,990 + 1 / 10\,785 + 1 / 16\,537)^{-1} = 4\,636 \text{ MN/m} \)

Bolt: \(l = 2(4.6) + 2(20) = 49.2 \text{ mm} \). Nut, Table A-31, \(H = 21.5 \text{ mm} \). \(L > 49.2 + 21.5 = 70.7 \text{ mm} \). From Table A-17, use \(L = 80 \text{ mm} \). From Eq. (8-14)

\[
L_T = 2(24) + 6 = 54 \text{ mm}, l_d = 80 - 54 = 26 \text{ mm}, l_t = 49.2 - 26 = 23.2 \text{ mm}
\]

From Table (8-1), \(A_t = 353 \text{ mm}^2, A_d = \pi (24^2) / 4 = 452.4 \text{ mm}^2 \)

Eq. (8-17):

\[
k_b = \frac{A_t A_d E}{A_d l_t + A_t l_d} = \frac{452.4 (353) 207}{452.4 (23.2) + 353 (26)} = 1680 \text{ MN/m}
\]

\[
C = k_b / (k_b + k_m) = 1680 / (1680 + 4636) = 0.266, S_p = 600 \text{ MPa}, F_i = 190.6 \text{ kN},
\]

\[
P = P_{total} / N = 18 / 4 = 4.5 \text{ kN}
\]

Yield: From Eq. (8-28)

\[
n_p = \frac{S_p A_t}{CP + F_i} = \frac{600 (353) 10^{-3}}{0.266 (4.5) + 190.6} = 1.10 \quad \text{Ans.}
\]

Load factor: From Eq. (8-29)

\[
n_L = \frac{S_p A_t - F_i}{CP} = \frac{600 (353) 10^{-3} - 190.6}{0.266 (4.5)} = 17.7 \quad \text{Ans.}
\]

Separation: From Eq. (8-30)
\[n_0 = \frac{F_i}{P(1-C)} = \frac{190.6}{4.5(1-0.266)} = 57.7 \quad \text{Ans.} \]

As was stated in the text, bolts are typically preloaded such that the yielding factor of safety is not much greater than unity which is the case for this problem. However, the other load factors indicate that the bolts are oversized for the external load.

8-47 (a) ISO M 20 × 2.5 grade 8.8 coarse pitch bolts, lubricated.

Table 8-2, \[A_t = 245 \text{ mm}^2 \]
Table 8-11, \[F_i = 0.90 A_t, S_p = 0.90(245)600(10^{-3}) = 132.3 \text{ kN} \]
Table 8-15, \[K = 0.18 \]

Eq. (8-27), \[T = KF_i d = 0.18(132.3)20 = 476 \text{ N} \cdot \text{m} \quad \text{Ans.} \]

(b) Table A-31, \(H = 18 \text{ mm}, L \geq L_G + H = 48 + 18 = 66 \text{ mm.} \) Round up to \(L = 80 \text{ mm} \) per Table A-17.

\[L_T = 2d + 6 = 2(20) + 6 = 46 \text{ mm} \]
\[l_d = L - L_T = 80 - 46 = 34 \text{ mm} \]
\[l_i = l - l_d = 48 - 34 = 14 \text{ mm} \]

\[A_d = \pi (20^2) / 4 = 314.2 \text{ mm}^2, \]

\[k_b = \frac{A_dA_E}{A_dl_i + A_il_d} = \frac{314.2(245)(207)}{314.2(14) + 245(34)} = 1251.9 \text{ MN/m} \]

Members: Since all members are steel use Eq. (8-22) with \(E = 207 \text{ MPa}, l = 48 \text{ mm}, d = 20 \text{ mm} \)

\[k_m = \frac{0.5774\pi Ed}{2\ln \left(\frac{0.5774l + 0.5d}{0.5774l + 2.5d} \right)} = \frac{0.5774\pi (207)20}{2\ln \left[\frac{0.5774(48) + 0.5(20)}{0.5774(48) + 2.5(20)} \right]} = 4236 \text{ MN/m} \]

\[C = \frac{k_b}{k_b + k_m} = \frac{1251.9}{1251.9 + 4236} = 0.228 \]

\[P = P_{\text{total}} / N = 40/2 = 20 \text{ kN}, \]

Yield: From Eq. (8-28)

\[n_p = \frac{S_p A_t}{CP + F_i} = \frac{600(245)10^{-3}}{0.228(20) + 132.3} = 1.07 \quad \text{Ans.} \]
Load factor: From Eq. (8-29)

\[n_L = \frac{S_p A_i - F_i}{CP} = \frac{600(245)10^{-3} - 132.3}{0.228(20)} = 3.22 \quad \text{Ans.} \]

Separation: From Eq. (8-30)

\[n_s = \frac{F_i}{P(1-C)} = \frac{132.3}{20(1-0.228)} = 8.57 \quad \text{Ans.} \]

8-48 From Prob. 8-29 solution, \(P_{\text{max}} = 13.33 \) kips, \(C = 0.2 \), \(F_i = 12.77 \) kips, \(A_i = 0.1419 \) in\(^2\)

\[\sigma_i = \frac{F_i}{A_i} = \frac{12.77}{0.1419} = 90.0 \text{ kpsi} \]

Eq. (8-39),

\[\sigma_a = \frac{CP}{2A_i} = \frac{0.2(13.33)}{2(0.1419)} = 9.39 \text{ kpsi} \]

Eq. (8-41),

\[\sigma_m = \sigma_a + \sigma_i = 9.39 + 90.0 = 99.39 \text{ kpsi} \]

(a) Goodman Eq. (8-45) for grade 8 bolts, \(S_e = 23.2 \) kpsi (Table 8-17), \(S_{ut} = 150 \) kpsi (Table 8-9)

\[n_f = \frac{S_e(S_{ut} - \sigma_i)}{\sigma_a(S_{ut} + S_e)} = \frac{23.2(150 - 90.0)}{9.39(150 + 23.2)} = 0.856 \quad \text{Ans.} \]

(b) Gerber Eq. (8-46)

\[n_f = \frac{1}{2\sigma_a S_e} \left[S_{ut} \sqrt{S_{ut}^2 + 4S_e(S_e + \sigma_i) - S_{ut}^2 - 2S_e^2S_e^2} \right] \]

\[= \frac{1}{2(9.39)23.2} \left[150 \sqrt{150^2 + 4(23.2)(23.2 + 90.0)} - 150^2 - 2(90.0)23.2 \right] = 1.32 \quad \text{Ans.} \]

(c) ASME-elliptic Eq. (8-47) with \(S_p = 120 \) kpsi (Table 8-9)

\[n_f = \frac{S_e}{\sigma_a(S_p + S_e)} \left(S_p \sqrt{S_p^2 + S_e^2 - \sigma_i^2 - S_e^2} \right) \]

\[= \frac{23.2}{9.39(120^2 + 23.2^2)} \left[120 \sqrt{120^2 + 23.2^2} - 90^2 - 90(23.2) \right] = 1.30 \quad \text{Ans.} \]

8-49 **Attention to the Instructor.** Part (d) requires the determination of the endurance strength, \(S_e \), of a class 5.8 bolt. Table 8-17 does not provide this and the student will be required to estimate it by other means [see the solution of part (d)].

Per bolt, \(P_{b\text{max}} = 60/8 = 7.5 \) kN, \(P_{b\text{min}} = 20/8 = 2.5 \) kN

\[C = \frac{k_p}{k_i + k_m} = \frac{1}{1 + 2.6} = 0.278 \]

(a) Table 8-1, \(A_t = 20.1 \text{ mm}^2 \); Table 8-11, \(S_p = 380 \text{ MPa} \)

Eqs. (8-31) and (8-32), \(F_i = 0.75 A_t \), \(S_p = 0.75(20.1)380(10^{-3}) = 5.73 \text{ kN} \)

Yield, Eq. (8-28), \[n_p = \frac{S_p A_t}{CP + F_i} = \frac{380(20.1)10^{-3}}{0.278(7.5) + 5.73} = 0.98 \quad \text{Ans.} \]

(b) Overload, Eq. (8-29), \[n_o = \frac{S_p A_t - F_i}{CP} = \frac{380(20.1)10^{-3} - 5.73}{0.278(7.5)} = 0.915 \quad \text{Ans.} \]

(c) Separation, Eq. (8-30), \[n_o = \frac{F_i}{i} = \frac{5.73}{7.5(1 - 0.278)} = 1.06 \quad \text{Ans.} \]

(d) Goodman, Eq. (8-35), \[\sigma_a = \frac{C(P_{\text{max}} - P_{\text{min}})}{2A_t} = \frac{0.278(7.5 - 2.5)10^3}{2(20.1)} = 34.6 \text{ MPa} \]

Eq. (8-36), \[\sigma_m = \frac{C(P_{\text{max}} + P_{\text{min}})}{2A_t} + \frac{F_i}{A_t} = \frac{0.278(7.5 + 2.5)10^3}{2(20.1)} + \frac{5.73(10^3)}{20.1} = 354.2 \text{ MPa} \]

Table 8-11, \(S_{ut} = 520 \text{ MPa} \), \(\sigma_i = F_i / A_t = 5.73(10^3)/20.1 = 285 \text{ MPa} \)

We have a problem for \(S_e \). Table 8-17 does not list \(S_e \) for class 5.8 bolts. Here, we will estimate \(S_e \) using the methods of Chapter 6. Estimate \(S'_e \) from the,

Eq. (6-8), p. 282, \[S'_e = 0.5S_{ut} = 0.5(520) = 260 \text{ MPa} \]

Table 6-2, p. 288, \[a = 4.51, \; b = -0.265 \]

Eq. (6-19), p. 287, \[k_a = aS_{ut} = 4.51(520^{-0.265}) = 0.860 \]

Eq. (6-21), p. 288, \[k_b = 1 \]

Eq. (6-26), p.290, \[k_c = 0.85 \]

The fatigue stress-concentration factor, from Table 8-16, is \(K_f = 2.2 \). For simple axial loading and infinite-life it is acceptable to reduce the endurance limit by \(K_f \) and use the nominal stresses in the stress/strength/design factor equations. Thus,

Eq. (6-18), p. 287, \[S_e = k_a k_b k_c S'_e / K_f = 0.86(1)0.85(260) / 2.2 = 86.4 \text{ MPa} \]

Eq. (8-38), \[n_f = \frac{S_e(S_{ut} - \sigma_i)}{S_{ut}\sigma_a + S_e(S_m - \sigma_i)} = \frac{86.4(520 - 285)}{520(34.6) + 86.4(354.2 - 285)} = 0.847 \quad \text{Ans.} \]

It is obvious from the various answers obtained, the bolted assembly is undersized. This can be rectified by a one or more of the following: more bolts, larger bolts, higher class bolts.

8-50 Per bolt, \(P_{\text{max}} = P_{\text{max}} / N = 80/10 = 8 \text{ kips} \), \(P_{\text{min}} = P_{\text{min}} / N = 20/10 = 2 \text{ kips} \)

\[C = k_b / (k_b + k_m) = 4/(4 + 12) = 0.25 \]

(a) Table 8-2, \(A_t = 0.1419 \text{ in}^2 \), Table 8-9, \(S_p = 120 \text{ kpsi} \) and \(S_{ut} = 150 \text{ kpsi} \)
Table 8-17, $S_e = 23.2$ ksi

Eqs. (8-31) and (8-32), $F_i = 0.75 A_i S_p \implies \sigma_i = F_i / A_i = 0.75 S_p = 0.75(120) = 90$ ksi

Eq. (8-35), $\sigma_a = \frac{C(P_{h \max} - P_{h \min})}{2A_i} = \frac{0.25(8 - 2)}{2(0.1419)} = 5.29$ kpsi

Eq. (8-36), $\sigma_m = \frac{C(P_{h \max} + P_{h \min})}{2A_i} + \sigma_i = \frac{0.25(8 + 2)}{2(0.1419)} + 90 = 98.81$ kpsi

Eq. (8-38),

$$n_f = \frac{S_e(S_u - \sigma_i)}{S_u \sigma_a + S_e(\sigma_m - \sigma_i)} = \frac{23.2(150 - 90)}{150(5.29) + 23.2(98.81 - 90)} = 1.39 \quad \text{Ans.}$$

8-51 From Prob. 8-33, $C = 0.263$, $P_{\max} = 4.712$ kN / bolt, $F_i = 41.1$ kN, $S_p = 650$ MPa, and $A_i = 84.3$ mm2

$$\sigma_i = 0.75 S_p = 0.75(650) = 487.5 \text{ MPa}$$

Eq. (8-39): $\sigma_a = \frac{CP}{2A_i} = \frac{0.263(4.712)10^3}{2(84.3)} = 7.350 \text{ MPa}$

Eq. (8-40) $\sigma_m = \frac{CP}{2A_i} + \frac{F_i}{A_i} = 7.350 + 487.5 = 494.9 \text{ MPa}$

(a) Goodman: From Table 8-11, $S_u = 900$ MPa, and from Table 8-17, $S_e = 140$ MPa

Eq. (8-45): $n_f = \frac{S_e(S_u - \sigma_i)}{\sigma_a(S_u + S_e)} = \frac{140(900 - 487.5)}{7.350(900 + 140)} = 7.55 \quad \text{Ans.}$

(b) Gerber:

Eq. (8-46):

$$n_f = \frac{1}{2\sigma_a S_e} \left[S_u \sqrt{S_u^2 + 4S_e(\sigma_e + \sigma_i) - S_u^2 - 2\sigma_i S_e} \right]$$

$$= \frac{1}{2(7.350)140} \left[900 \sqrt{900^2 + 4(140)(140 + 487.5) - 900^2 - 2(487.5)(140)} \right]$$

$$= 11.4 \quad \text{Ans.}$$

(c) ASME-elliptic:

Eq. (8-47):
\[
\begin{align*}
n_f &= \frac{S_e}{\sigma_a(S_p^2 + S_c^2)} \left(S_p \sqrt{S_p^2 + S_c^2 - \sigma_i^2} - \sigma_c \right) \\
&= \frac{140}{7.350(650^2 + 140^2)} \left[650\sqrt{650^2 + 140^2} - 487.5^2 - 487.5(140) \right] = 9.73 \quad \text{Ans.}
\end{align*}
\]

8-52 From Prob. 8-34, \(C = 0.299, P_{\text{max}} = 1.443 \text{ kips/bolt}, F_i = 9.05 \text{ kips}, S_p = 85 \text{ kpsi}, \) and \(A_i = 0.1419 \text{ in}^2 \)

\[
\sigma_i = 0.75S_p = 0.75(85) = 63.75 \text{ kpsi}
\]

Eq. (8-37): \[
\sigma_a = \frac{CP}{2A_i} = \frac{0.299(1.443)}{2(0.1419)} = 1.520 \text{ kpsi}
\]

Eq. (8-38) \[
\sigma_m = \frac{CP}{2A_i} + \sigma_i = 1.520 + 63.75 = 65.27 \text{ kpsi}
\]

(a) Goodman: From Table 8-9, \(S_{xt} = 120 \text{ kpsi}, \) and from Table 8-17, \(S_e = 18.8 \text{ kpsi} \)

Eq. (8-45): \[
n_f = \frac{S_e(S_{xt} - \sigma_i)}{\sigma_a(S_{xt} + S_c)} = \frac{18.8(120 - 63.75)}{1.520(120 + 18.8)} = 5.01 \quad \text{Ans.}
\]

(b) Gerber:
Eq. (8-46):
\[
n_f = \frac{1}{2\sigma_a S_c} \left[S_{xt} \sqrt{S_{xt}^2 + 4S_e(S_e + \sigma_i)} - S_{xt}^2 - 2\sigma_c S_e \right]
\]
\[
= \frac{1}{2(1.520)18.6} \left[120 \sqrt{120^2 + 4(18.6)(18.6 + 63.75)} - 120^2 - 2(63.75)(18.6) \right]
\]
\[
= 7.45 \quad \text{Ans.}
\]

(c) ASME-elliptic:
Eq. (8-47):
\[
n_f = \frac{S_e}{\sigma_a(S_p^2 + S_c^2)} \left(S_p \sqrt{S_p^2 + S_c^2 - \sigma_i^2} - \sigma_c \right)
\]
\[
= \frac{18.6}{1.520(85^2 + 18.6^2)} \left[85\sqrt{85^2 + 18.6^2} - 63.75^2 - 63.75(18.6) \right] = 6.22 \quad \text{Ans.}
\]
8-53 From Prob. 8-35, $C = 0.228$, $P_{\text{max}} = 7.679$ kN/bolt, $F_i = 36.1$ kN, $S_p = 830$ MPa, and $A_t = 58.0$ mm2

\[\sigma_i = 0.75 S_p = 0.75(830) = 622.5 \text{ MPa} \]

Eq. (8-37): \[\sigma_a = \frac{CP}{2A_t} = \frac{0.228(7.679)10^3}{2(58.0)} = 15.09 \text{ MPa} \]

Eq. (8-38) \[\sigma_a = \frac{CP}{2A_t} + \sigma_i = 15.09 + 622.5 = 637.6 \text{ MPa} \]

(a) Goodman: From Table 8-11, $S_{\text{ut}} = 1040$ MPa, and from Table 8-17, $S_e = 162$ MPa

Eq. (8-45): \[n_f = \frac{S_e (S_{\text{ut}} - \sigma_i)}{\sigma_a (S_{\text{ut}} + S_e)} = \frac{162(1040 - 622.5)}{15.09(1040 + 162)} = 3.73 \quad \text{Ans.} \]

(b) Gerber:

Eq. (8-46):

\[n_f = \frac{1}{2\sigma_a S_e} \left[S_{\text{ut}} \sqrt{S_{\text{ut}}^2 + 4S_e (S_c + \sigma_i)} - S_{\text{ut}}^2 - 2\sigma_i S_e \right] \]

\[= \frac{1}{2(15.09)162} \left[1040 \sqrt{1040^2 + 4(162)(162 + 622.5)} - 1040^2 - 2(622.5)(162) \right] \]

\[= 5.74 \quad \text{Ans.} \]

(c) ASME-elliptic:

Eq. (8-47):

\[n_f = \frac{S_e}{\sigma_a (S_p + S_e)} \left(S_p \sqrt{S_p^2 + S_e^2 - \sigma_i^2} - S_i S_e \right) \]

\[= \frac{162}{15.09(830^2 + 162^2)} \left[830 \sqrt{830^2 + 162^2} - 622.5^2 - 622.5(162) \right] = 5.62 \quad \text{Ans.} \]

8-54 From Prob. 8-36, $C = 0.291$, $P_{\text{max}} = 1.244$ kips/bolt, $F_i = 9.57$ kips, $S_p = 120$ kpsi, and $A_t = 0.106$ 3 in2

\[\sigma_i = 0.75 S_p = 0.75(120) = 90 \text{ kpsi} \]

Eq. (8-37): \[\sigma_a = \frac{CP}{2A_t} = \frac{0.291(1.244)}{2(0.106 3)} = 1.703 \text{ kpsi} \]
Eq. (8-38) \[\sigma_m = \frac{CP}{2A_t} + \sigma_i = 1.703 + 90 = 91.70 \text{ kpsi} \]

(a) Goodman: From Table 8-9, \(S_{ut} = 150 \text{ kpsi} \), and from Table 8-17, \(S_e = 23.2 \text{ kpsi} \)

Eq. (8-45): \[n_f = \frac{S_e (S_{ut} - \sigma_i)}{\sigma_a (S_{ut} + S_e)} = \frac{23.2(150 - 90)}{1.703(150 + 23.2)} = 4.72 \quad \text{Ans.} \]

(b) Gerber:

Eq. (8-46):

\[n_f = \frac{1}{2\sigma_a S_e} \left[S_{ut} \sqrt{S_{ut}^2 + 4S_e (S_e + \sigma_i) - S_e^2} - S_{ut} - 2\sigma_i S_e \right] \]

\[= \frac{1}{2 \times (1.703)23.2} \left[150 \sqrt{150^2 + 4(23.2)(23.2 + 90) - 2(90)(23.2)} \right] \]

\[= 7.28 \quad \text{Ans.} \]

(c) ASME-elliptic:

Eq. (8-47):

\[n_f = \frac{S_e}{\sigma_a (S_p + S_e)} \left(S_p \sqrt{S_p^2 + S_e^2 - \sigma_i^2} - S_p - \sigma_i S_e \right) \]

\[= \frac{23.2}{1.703(120^2 + 18.6^2)} \left[120 \sqrt{120^2 + 23.2^2 - 90^2} - 90(23.2) \right] = 7.24 \quad \text{Ans.} \]

8-55 From Prob. 8-51, \(C = 0.263, S_e = 140 \text{ MPa}, S_{ut} = 900 \text{ MPa}, \quad A_t = 84.4 \text{ mm}^2, \sigma_i = 487.5 \text{ MPa}, \) and \(P_{\text{max}} = 4.712 \text{ kN}. \)

\(P_{\text{min}} = \frac{P_{\text{max}}}{2} = 4.712/2 = 2.356 \text{ kN} \)

Eq. (8-35): \[\sigma_a = \frac{C (P_{\text{max}} - P_{\text{min}})}{2A_t} = \frac{0.263(4.712 - 2.356)10^3}{2(84.3)} = 3.675 \text{ MPa} \]

Eq. (8-36):
\[\sigma_m = \frac{C(P_{\text{max}} + P_{\text{min}})}{2A_t} + \sigma_i \]
\[= \frac{0.263(4.712 + 2.356) \times 10^3}{2(84.3)} + 487.5 = 498.5 \text{ MPa} \]

Eq. (8-38):
\[n_f = \frac{S_e(S_u - \sigma_i)}{S_u \sigma_a + S_e(\sigma_m - \sigma_i)} = \frac{140(900 - 487.5)}{900(3.675) + 140(498.5 - 487.5)} = 11.9 \text{ Ans.} \]

8-56 From Prob. 8-52, \(C = 0.299, S_e = 18.8 \text{ kpsi}, S_u = 120 \text{ kpsi}, A_t = 0.1419 \text{ in}^2, \sigma_i = 63.75 \text{ kpsi}, \) and \(P_{\text{max}} = 1.443 \text{ kips} \)
\[P_{\text{min}} = P_{\text{max}} / 2 = 1.443/2 = 0.722 \text{ kips} \]

Eq. (8-35):
\[\sigma_a = \frac{C(P_{\text{max}} - P_{\text{min}})}{2A_t} = \frac{0.299(1.443 - 0.722)}{2(0.1419)} = 0.760 \text{ kpsi} \]

Eq. (8-36):
\[\sigma_m = \frac{C(P_{\text{max}} + P_{\text{min}})}{2A_t} + \sigma_i \]
\[= \frac{0.299(1.443 + 0.722)}{2(0.1419)} + 63.75 = 66.03 \text{ kpsi} \]

Eq. (8-38):
\[n_f = \frac{S_e(S_u - \sigma_i)}{S_u \sigma_a + S_e(\sigma_m - \sigma_i)} = \frac{18.8(120 - 63.75)}{120(0.760) + 18.8(66.03 - 63.75)} = 7.89 \text{ Ans.} \]

8-57 From Prob. 8-53, \(C = 0.228, S_e = 162 \text{ MPa}, S_u = 1040 \text{ MPa}, A_t = 58.0 \text{ mm}^2, \sigma_i = 622.5 \text{ MPa}, \) and \(P_{\text{max}} = 7.679 \text{ kN}. \)
\[P_{\text{min}} = P_{\text{max}} / 2 = 7.679/2 = 3.840 \text{ kN} \]

Eq. (8-35):
\[\sigma_a = \frac{C(P_{\text{max}} - P_{\text{min}})}{2A_t} = \frac{0.228(7.679 - 3.840) \times 10^3}{2(58.0)} = 7.546 \text{ MPa} \]
Eq. (8-36):
\[
\sigma_m = \frac{C (P_{\text{max}} + P_{\text{min}})}{2A_t} + \sigma_i
\]
\[
= \frac{0.228 (7.679 + 3.840) \times 10^3}{2 (58.0)} + 622.5 = 645.1 \text{ MPa}
\]

Eq. (8-38):
\[
n_f = \frac{S_e (S_{ut} - \sigma_i)}{S_{ut} \sigma_a + S_e (\sigma_m - \sigma_i)} = \frac{162 (1040 - 622.5)}{1040 (7.546) + 162 (645.1 - 622.5)} = 5.88 \text{ Ans.}
\]

8-58 From Prob. 8-54, \(C = 0.291, S_e = 23.2 \text{ kpsi}, S_{ut} = 150 \text{ kpsi}, A_t = 0.106 \text{ 3 in}^2, \sigma_i = 90 \text{ kpsi}, \) and \(P_{\text{max}} = 1.244 \text{ kips} \)

\[
P_{\text{min}} = P_{\text{max}} / 2 = 1.244/2 = 0.622 \text{ kips}
\]

Eq. (8-35):
\[
\sigma_a = \frac{C (P_{\text{max}} - P_{\text{min}})}{2A_t} = \frac{0.291 (1.244 - 0.622)}{2 (0.106 \text{ 3})} = 0.851 \text{ kpsi}
\]

Eq. (8-36):
\[
\sigma_m = \frac{C (P_{\text{max}} + P_{\text{min}})}{2A_t} + \sigma_i
\]
\[
= \frac{0.291 (1.244 + 0.622)}{2 (0.106 \text{ 3})} + 90 = 92.55 \text{ kpsi}
\]

Eq. (8-38):
\[
n_f = \frac{S_e (S_{ut} - \sigma_i)}{S_{ut} \sigma_a + S_e (\sigma_m - \sigma_i)} = \frac{23.2 (150 - 90)}{150 (0.851) + 23.2 (92.55 - 90)} = 7.45 \text{ Ans.}
\]

8-59 Let the repeatedly-applied load be designated as \(P \). From Table A-22, \(S_{ut} = 93.7 \text{ kpsi} \).
Referring to the Figure of Prob. 3-122, the following notation will be used for the radii of Section AA.

\[
\begin{align*}
 r_i &= 1.5 \text{ in}, \quad r_o = 2.5 \text{ in}, \quad r_c = 2.0 \text{ in}
\end{align*}
\]
From Table 3-4, p. 121, with \(R = 0.5 \text{ in} \)
\[
\begin{align*}
 r_n &= \frac{R^2}{2\left(c_{0}^2 - r_c^2 - R^2\right)} = \frac{0.5^2}{2\left(2 - \sqrt{2^2 - 0.5^2}\right)} = 1.968\,246\,\text{in} \\
 e &= r_c - r_n = 2.0 - 1.968\,246 = 0.031\,754\,\text{in} \\
 c_o &= r_o - r_n = 2.5 - 1.968\,246 = 0.531\,754\,\text{in} \\
 c_i &= r_i - r_n = 1.968\,246 - 1.5 = 0.468\,246\,\text{in} \\
 A &= \pi(1^2) / 4 = 0.7854\,\text{in}^2
\end{align*}
\]

If \(P \) is the maximum load

\[
\begin{align*}
 M &= Pr_c = 2P \\
 \sigma_i &= \frac{P}{A} \left(1 + \frac{r_c c_i}{er_i}\right) = \frac{P}{0.785\,4} \left(1 + \frac{2(0.468)}{0.031\,754(1.5)}\right) = 26.29P \\
 \sigma_a &= \sigma_m = \frac{\sigma_i}{2} = \frac{26.294P}{2} = 13.15P
\end{align*}
\]

(a) \textit{Eye: Section AA, Table 6-2, p. 288, } \(a = 14.4 \text{ kpsi, } b = -0.718 \)

Eq. (6-19), p. 287,
\(k_a = 14.4(93.7)^{-0.718} = 0.553 \)

Eq. (6-23), p. 289,
\(d_c = 0.370 \, d \)

Eq. (6-20), p. 288,
\(k_b = \left(\frac{0.37}{0.30}\right)^{-0.107} = 0.978 \)

Eq. (6-26), p. 290,
\(k_c = 0.85 \)

Eq. (6-8), p. 282,
\(S_e = 0.5S_{ut} = 0.5(93.7) = 46.85\, \text{kpsi} \)

Eq. (6-18) p. 287,
\(S_e = 0.553(0.978)0.85(46.85) = 21.5\, \text{kpsi} \)

From Table 6-7, p. 307, for Gerber
\[
\begin{align*}
 n_f &= \frac{1}{2} \left(\frac{S_{ut}}{\sigma_m}\right)^2 \sigma_a S_e \left[-1 + \sqrt{1 + \left(\frac{2\sigma_m S_e}{S_{ut} \sigma_a}\right)^2}\right] \\
 \text{With } \sigma_m &= \sigma_a, \\
 n_f &= \frac{1}{2} \frac{S_{ut}^2}{\sigma_a S_e} \left[-1 + \sqrt{1 + \left(\frac{2S_e}{S_{ut}}\right)^2}\right] = \frac{1}{2} \frac{93.7^2}{13.15P(21.5)} \left[-1 + \sqrt{1 + \left(\frac{2(21.5)}{93.7}\right)^2}\right] = \frac{1.557}{P}
\end{align*}
\]

where \(P \) is in kips.
Thread: Die cut. Table 8-17 gives $S_e = 18.6 \text{ kpsi}$ for rolled threads. Use Table 8-16 to find S_e for die cut threads

$$S_e = 18.6(3.0/3.8) = 14.7 \text{ kpsi}$$

Table 8-2, $A_t = 0.663 \text{ in}^2$, $\sigma = P/A_t = P/0.663 = 1.51 P$, $\sigma_a = \sigma_m = \sigma/2 = 0.755 P$

From Table 6-7, Gerber

$$n_f = \frac{1}{2} \frac{S^2}{\sigma_a S_e} \left[-1 + \sqrt{1 + \left(\frac{2S}{S_{ut}} \right)^2} \right] = \frac{1}{2} \frac{93.7^2}{0.755P(14.7)} \left[-1 + \sqrt{1 + \left(\frac{2(14.7)}{93.7} \right)^2} \right] = \frac{19.01}{P}$$

Comparing $1910/P$ with $19200/P$, we conclude that the eye is weaker in fatigue. Ans.

(b) Strengthening steps can include heat treatment, cold forming, cross section change (a round is a poor cross section for a curved bar in bending because the bulk of the material is located where the stress is small). Ans.

(c) For $n_f = 2$

$$P = \frac{1.557(10^3)}{2} = 779 \text{ lbf, max. load} \quad \text{Ans.}$$

8-60 Member, Eq. (8-22) with $E = 16 \text{ Mpsi}$, $d = 0.75 \text{ in}$, and $l = 1.5 \text{ in}$

$$k_m = \frac{0.5774\pi Ed}{2 \ln \left(\frac{5 \frac{0.5774l + 0.5d}{0.5774l + 2.5d}}{0.5774l + 2.5d} \right)} = \frac{0.5774\pi (16)(0.75)}{2 \ln \left[\frac{5 \frac{0.5774(1.5) + 0.5(0.75)}{0.5774(1.5) + 2.5(0.75)}}{0.5774(1.5) + 2.5(0.75)} \right]} = 13.32 \text{ Mlbf/in}$$

Bolt, Eq. (8-13),

$$L_T = 2d + 0.25 = 2(0.75) + 0.25 = 1.75 \text{ in}$$

$l = 1.5 \text{ in}$

$$l_d = L - L_T = 2.5 - 1.75 = 0.75 \text{ in}$$

$$l_t = l - l_d = 1.5 - 0.75 = 0.75 \text{ in}$$

Table 8-2,

$$A_t = 0.373 \text{ in}^2$$

$$A_d = \pi(0.75^2)/4 = 0.442 \text{ in}^2$$

Eq. (8-17),
\[k_b = \frac{A_d A_i E}{A_d l_d + A_i l_d} = \frac{0.442(0.373)30}{0.442(0.75) + 0.373(0.75)} = 8.09 \text{ Mlb/in} \]

\[C = \frac{k_b}{k_b + k_m} = \frac{8.09}{8.09 + 13.32} = 0.378 \]

Eq. (8-35),
\[\sigma_a = \frac{C(P_{max} - P_{min})}{2A_i} = \frac{0.378(6 - 4)}{2(0.373)} = 1.013 \text{ kpsi} \]

Eq. (8-36),
\[\sigma_m = \frac{C(P_{max} + P_{min})}{2A_i} + \frac{F_i}{A_i} = \frac{0.378(6 + 4)}{2(0.373)} + \frac{25}{0.373} = 72.09 \text{ kpsi} \]

(a) From Table 8-9, \(S_p = 85 \text{ kpsi} \), and Eq. (8-51), the yielding factor of safety is
\[n_p = \frac{S_p}{\sigma_a + \sigma_e} = \frac{85}{72.09 + 1.013} = 1.16 \quad \text{Ans.} \]

(b) From Eq. (8-29), the overload factor of safety is
\[n_o = \frac{S_p A_i - F_i}{C P_{max}} = \frac{85(0.373) - 25}{0.378(6)} = 2.96 \quad \text{Ans.} \]

(c) From Eq. (8-30), the factor of safety based on joint separation is
\[n_o = \frac{F_i}{P_{max}(1 - C)} = \frac{25}{6(1 - 0.378)} = 6.70 \quad \text{Ans.} \]

(d) From Table 8-17, \(S_e = 18.6 \text{ kpsi} \); Table 8-9, \(S_{ut} = 120 \text{ kpsi} \); the preload stress is \(\sigma_i = F_i / A_i = 25/0.373 = 67.0 \text{ kpsi} \); and from Eq. (8-38)
\[n_f = \frac{S_e (S_{ut} - \sigma_i)}{S_u \sigma_a + S_e (\sigma_m - \sigma_i)} = \frac{18.6(120 - 67.0)}{120(1.013) + 18.6(72.09 - 67.0)} = 4.56 \quad \text{Ans.} \]

8-61 (a) Table 8-2, \(A_l = 0.1419 \text{ in}^2 \)
Table 8-9, \(S_p = 120 \text{ kpsi} \), \(S_{ut} = 150 \text{ kpsi} \)
Table 8-17, \(S_e = 23.2 \text{ kpsi} \)
Eqs. (8-31) and (8-32), \(\sigma_i = 0.75 S_p = 0.75(120) = 90 \text{ kpsi} \)
\[C = \frac{k_h}{k_h + k_m} = \frac{4}{4 + 16} = 0.2 \]
\[\sigma_a = \frac{CP}{2A_i} = \frac{0.2P}{2(0.1419)} = 0.705P \text{ kpsi} \]

Eq. (8-45) for the Goodman criterion,
\[n_f = \frac{S_e (S_{ut} - \sigma_i)}{\sigma_a (S_{ut} + S_e)} = \frac{23.2(150 - 90)}{0.705P(150 + 23.2)} = \frac{11.4}{P} = 2 \Rightarrow P = 5.70 \text{ kips} \quad \text{Ans.} \]

(b) \(F_i = 0.75 A_i, S_p = 0.75(0.1419)120 = 12.77 \text{ kips} \)
Yield, Eq. (8-28),
\[n_p = \frac{S_p A_i}{CP + F_i} = \frac{120(0.1419)}{0.2(5.70) + 12.77} = 1.22 \quad \text{Ans.} \]
Load factor, Eq. (8-29),
\[n_L = \frac{S_p A_i - F_i}{CP} = \frac{120(0.1419) - 12.77}{0.2(5.70)} = 3.74 \quad \text{Ans.} \]
Separation load factor, Eq. (8-30)
\[n_0 = \frac{F_i}{P(1 - C)} = \frac{12.77}{5.70(1 - 0.2)} = 2.80 \quad \text{Ans.} \]

8-62 Table 8-2, \(A_i = 0.969 \text{ in}^2 \) (coarse), \(A_t = 1.073 \text{ in}^2 \) (fine)
Table 8-9, \(S_p = 74 \text{ kpsi}, S_{ut} = 105 \text{ kpsi} \)
Table 8-17, \(S_e = 16.3 \text{ kpsi} \)

Coarse thread,
\[F_i = 0.75 A_i, S_p = 0.75(0.969)74 = 53.78 \text{ kips} \]
\[\sigma_i = 0.75 S_p = 0.75(74) = 55.5 \text{ kpsi} \]
\[\sigma_a = \frac{CP}{2A_i} = \frac{0.30P}{2(0.969)} = 0.155P \text{ kpsi} \]

Gerber, Eq. (8-46),
\[n_f = \frac{1}{2\sigma_a S_e} \left[S_{ut} \sqrt{S_{ut}^2 + 4S_e (S_c + \sigma_i)} - S_{ut}^2 - 2\sigma_i S_e \right] \]
\[= \frac{1}{2(0.155P)16.3} \left[105\sqrt{105^2 + 4(16.3)(16.3 + 55.5)} - 105^2 - 2(55.5)16.3 \right] = \frac{64.28}{P} \]

With \(n_f = 2 \),

Chap. 8 Solutions - Rev. A, Page 53/69
\[P = \frac{64.28}{2} = 32.14 \text{ kip} \quad \text{Ans.} \]

Fine thread,
\[F_i = 0.75 A_i S_p = 0.75(1.073)74 = 59.55 \text{kips} \]
\[\sigma_i = 0.75 S_p = 0.75(74) = 55.5 \text{ kpsi} \]
\[\sigma_a = \frac{CP}{2A_i} = \frac{0.32P}{2(1.073)} = 0.149P \text{kpsi} \]

The only thing that changes in Eq. (8-46) is \(\sigma_a \). Thus,
\[n_f = \frac{0.155}{0.149} \frac{64.28}{P} = 66.87 = 2 \quad \Rightarrow \quad P = 33.43 \text{ kips} \quad \text{Ans.} \]

Percent improvement,
\[\frac{33.43 - 32.14}{32.14} (100) = 4\% \quad \text{Ans.} \]

8-63 For an M 30 × 3.5 ISO 8.8 bolt with \(P = 65 \text{ kN/bolt} \) and \(C = 0.28 \)

Table 8-1, \(A_t = 561 \text{ mm}^2 \)
Table 8-11, \(S_p = 600 \text{ MPa}, S_u = 830 \text{ MPa} \)
Table 8-17, \(S_e = 129 \text{ MPa} \)

Eq. (8-31), \[F_i = 0.75 F_p = 0.75 A_i S_p \]
\[= 0.75(5610600(10^{-3}) = 252.45 \text{ kN} \]
\[\sigma_i = 0.75 S_p = 0.75(600) = 450 \text{ MPa} \]

Eq. (8-39), \[\sigma_a = \frac{CP}{2A_t} = \frac{0.28(65)10^3}{2(561)} = 16.22 \text{ MPa} \]

Gerber, Eq. (8-46),
\[n_f = \frac{1}{2\sigma_a S_e} \left[S_u \sqrt{S_u^2 + 4S_e(S_e + \sigma_i)} - S_u^2 - 2\sigma_i S_e \right] \]
\[= \frac{1}{2(16.22)129} \left[830\sqrt{830^2 + 4(129)(129 + 450)} - 830^2 - 2(450)129 \right] \]
\[= 4.75 \quad \text{Ans.} \]

The yielding factor of safety, from Eq. (8-28) is
From Eq. (8-29), the load factor is
\[n_L = \frac{S_p A_i - F_i}{CP} = \frac{600 \times 561 \times 10^{-3} - 252.45}{0.28(65)} = 4.62 \quad \text{Ans.} \]

The separation factor, from Eq. (8-30) is
\[n_0 = \frac{F_i}{P(1 - C)} = \frac{252.45}{65(1 - 0.28)} = 5.39 \quad \text{Ans.} \]

8-64 (a) Table 8-2, \(A_i = 0.0775 \text{ in}^2 \)
Table 8-9, \(S_p = 85 \text{ kpsi}, \ S_{ut} = 120 \text{ kpsi} \)
Table 8-17, \(S_e = 18.6 \text{ kpsi} \)
Unthreaded grip,
\[k_b = \frac{A_i E}{l} = \frac{\pi (0.375)^2 (30)}{4(13.5)} = 0.245 \text{ Mlb}^2/\text{in per bolt} \quad \text{Ans.} \]
\[A_m = \frac{\pi}{4} [(D + 2t)^2 - D^2] = \frac{\pi}{4} (4.75^2 - 4^2) = 5.154 \text{ in}^2 \]
\[k_m = \frac{A_i E}{l} = \frac{5.154(30)}{12} \left(\frac{1}{6}\right) = 2.148 \text{ Mlb}^2/\text{bolt}. \quad \text{Ans.} \]

(b) \(F_i = 0.75 \ A_i, S_p = 0.75(0.0775)(85) = 4.94 \text{ kip} \)
\(\sigma_i = 0.75S_p = 0.75(85) = 63.75 \text{ kpsi} \)
\[P = pA = \frac{2000}{6} \left[\frac{\pi}{4} (4)^2 \right] = 4189 \text{ lbf/bolt} \]
\[C = \frac{k_b}{k_b + k_m} = \frac{0.245}{0.245 + 2.148} = 0.102 \]
\[\sigma_a = \frac{CP}{2A_i} = \frac{0.102(4.189)}{2(0.0775)} = 2.77 \text{ kpsi} \]

From Eq. (8-46) for Gerber fatigue criterion,
\[n_f = \frac{1}{2 \sigma_a S_e} \left[S_{ut} \sqrt{S_{ut}^2 + 4S_e (S_e + \sigma_i) - S_{ut}^2 - 2\sigma_i S_e} \right] \]
\[= \frac{1}{2(2.77)(18.6)} \left[120 \sqrt{120^2 + 4(18.6)(18.6 + 63.75) - 120^2 - 2(63.75)(18.6)} \right] = 4.09 \quad \text{Ans.} \]
(c) Pressure causing joint separation from Eq. (8-30)

\[
n_0 = \frac{F_i}{P(1-C)} = 1
\]

\[
P = \frac{F_i}{1-C} = \frac{4.94}{1-0.102} = 5.50 \text{ kip}
\]

\[
p = \frac{P}{A} = \frac{5.50}{\pi(4^2)/4} = 2.63 \text{ kpsi} \quad \text{Ans.}
\]

8-65 From the solution of Prob. 8-64, \(A_t = 0.0775 \text{ in}^2\), \(S_{ut} = 120 \text{ kpsi}\), \(S_e = 18.6 \text{ kpsi}\), \(C = 0.102\), \(\sigma_i = 63.75 \text{ kpsi}\)

\[
P_{\text{max}} = p_{\text{max}}A = 2 \pi (4^2)/4 = 25.13 \text{ kpsi}, \quad P_{\text{min}} = p_{\text{min}}A = 1.2 \pi (4^2)/4 = 15.08 \text{ kpsi},
\]

Eq. (8-35),
\[
\sigma_a = \frac{C(P_{\text{max}} - P_{\text{min}})}{2A_t} = \frac{0.102(25.13 - 15.08)}{2(0.0775)} = 6.61 \text{ kpsi}
\]

Eq. (8-36),
\[
\sigma_m = \frac{C(P_{\text{max}} + P_{\text{min}})}{2A_t} + \sigma_i = \frac{0.102(25.13 + 15.08)}{2(0.0775)} + 63.75 = 90.21 \text{ kpsi}
\]

Eq. (8-38),
\[
n_f = \frac{S_e(S_{ut} - \sigma_i)}{S_{ut}\sigma_a + S_e(\sigma_m - \sigma_i)} = \frac{18.6(120 - 63.75)}{120(6.61) + 18.6(90.21 - 63.75)} = 0.814 \quad \text{Ans.}
\]

This predicts a fatigue failure.

8-66 Members: \(S_t = 57 \text{ kpsi}\), \(S_{sv} = 0.577(57) = 32.89 \text{ kpsi}\).

Bolts: SAE grade 5, \(S_y = 92 \text{ kpsi}\), \(S_{sy} = 0.577(92) = 53.08 \text{ kpsi}\)

Shear in bolts,
\[
A_s = 2\left[\frac{\pi(0.25^2)}{4}\right] = 0.0982 \text{ in}^2
\]

\[
F_s = \frac{A_s S_{sv}}{n} = \frac{0.0982(53.08)}{2} = 2.61 \text{ kips}
\]

Bearing on bolts,
\[
A_b = 2(0.25)0.25 = 0.125 \text{ in}^2
\]

\[
F_b = \frac{A_b S_y}{n} = \frac{0.125(92)}{2} = 5.75 \text{ kips}
\]

Bearing on member,
The shear in the bolts controls the design.

8-67 Members, Table A-20, \(S_y = 42 \text{ kpsi} \)
Bolts, Table 8-9, \(S_y = 130 \text{ kpsi} \), \(S_{sy} = 0.577(130) = 75.01 \text{ kpsi} \)

Shear of bolts,
\[
A_s = 2 \left[\frac{\pi (5/16)^2}{4} \right] = 0.1534 \text{ in}^2
\]
\[
\tau = \frac{F_s}{A_s} = \frac{5}{0.1534} = 32.6 \text{ kpsi}
\]
\[
n = \frac{S_{sy}}{\tau} = \frac{75.01}{32.6} = 2.30 \text{ Ans.}
\]

Bearing on bolts,
\[
A_b = 2(0.25)(5/16) = 0.1563 \text{ in}^2
\]
\[
\sigma_b = -\frac{5}{0.1563} = -32.0 \text{ kpsi}
\]
\[
n = \frac{S_y}{|\sigma_b|} = \frac{130}{32.0} = 4.06 \text{ Ans.}
\]

Bearing on members,
\[
n = \frac{S_y}{|\sigma_b|} = \frac{42}{32} = 1.31 \text{ Ans.}
\]

Tension of members,
\[
A_t = \left[2.375 - 2(5/16) \right](1/4) = 0.4375 \text{ in}^2
\]
\[
\sigma_t = \frac{5}{0.4375} = 11.4 \text{ kpsi}
\]
\[n = \frac{S_y}{\sigma_t} = \frac{42}{11.4} = 3.68 \quad \text{Ans.} \]

8-68 Members: Table A-20, \(S_y = 490 \) MPa, \(S_{sy} = 0.577(490) = 282.7 \) MPa
Bolts: Table 8-11, ISO class 5.8, \(S_y = 420 \) MPa, \(S_{sy} = 0.577(420) = 242.3 \) MPa

Shear in bolts,
\[
A_s = 2 \left[\frac{\pi (20^2)}{4} \right] = 628.3 \text{ mm}^2 \\
F_s = \frac{A_s S_{sy}}{n} = \frac{628.3(242.3) \times 10^{-3}}{2.5} = 60.9 \text{ kN}
\]

Bearing on bolts,
\[
A_b = 2(20)20 = 800 \text{ mm}^2 \\
F_b = \frac{A_b S_{sy}}{n} = \frac{800(420) \times 10^{-3}}{2.5} = 134 \text{ kN}
\]

Bearing on member,
\[
F_b = \frac{800(490) \times 10^{-3}}{2.5} = 157 \text{ kN}
\]

Tension of members,
\[
A_t = (80 - 20)(20) = 1200 \text{ mm}^2 \\
F_t = \frac{1200(490) \times 10^{-3}}{2.5} = 235 \text{ kN} \\
F = \min(60.9, 134, 157, 235) = 60.9 \text{ kN} \quad \text{Ans.}
\]

The shear in the bolts controls the design.

8-69 Members: Table A-20, \(S_y = 320 \) MPa
Bolts: Table 8-11, ISO class 5.8, \(S_y = 420 \) MPa, \(S_{sy} = 0.577(420) = 242.3 \) MPa

Shear of bolts,
\[
A_s = \pi (20^2)/4 = 314.2 \text{ mm}^2 \\
\tau_s = \frac{90(10^3)}{3(314.2)} = 95.48 \text{ MPa} \\
n = \frac{S_{sy}}{\tau_s} = \frac{242.3}{95.48} = 2.54 \quad \text{Ans.}
\]

Bearing on bolt,
\[
A_b = 3(20)15 = 900 \text{ mm}^2
\]
\[
\sigma_b = -\frac{90 \left(10^3\right)}{900} = -100 \text{ MPa}
\]
\[
n = \frac{S_y}{|\sigma_b|} = \frac{420}{100} = 4.2 \quad \text{Ans.}
\]

Bearing on members,
\[
n = \frac{S_y}{\sigma_b} = \frac{320}{100} = 3.2 \quad \text{Ans.}
\]

Tension on members,
\[
\sigma_t = \frac{F}{A} = \frac{90 \left(10^3\right)}{15[190 - 3(20)]} = 46.15 \text{ MPa}
\]
\[
n = \frac{S_y}{\sigma_t} = \frac{320}{46.15} = 6.93 \quad \text{Ans.}
\]

8-70 \ Members: \(S_y = 57\) kpsi
Bolts: \(S_y = 100\) kpsi, \(S_{sy} = 0.577(100) = 57.7\) kpsi
Shear of bolts,
\[
A = 3 \left[\frac{\pi \left(1/4\right)^2}{4} \right] = 0.1473 \text{ in}^2
\]
\[
\tau_s = \frac{F}{A} = \frac{5}{0.1473} = 33.94 \text{ kpsi}
\]
\[
n = \frac{S_{sy}}{\tau_s} = \frac{57.7}{33.94} = 1.70 \quad \text{Ans.}
\]

Bearing on bolts,
\[
A_b = 3(1/4)(5/16) = 0.2344 \text{ in}^2
\]
\[
\sigma_b = -\frac{F}{A_b} = -\frac{5}{0.2344} = -21.3 \text{ kpsi}
\]
\[
n = \frac{S_y}{|\sigma_b|} = \frac{100}{21.3} = 4.69 \quad \text{Ans.}
\]

Bearing on members,
\[
A_b = 0.2344 \text{ in}^2 \quad \text{(From bearing on bolts calculation)}
\]
\[
\sigma_b = -21.3 \text{ kpsi} \quad \text{(From bearing on bolts calculation)}
\]
n = \frac{S_y}{\sigma_t} = \frac{57}{21.3} = 2.68 \quad \text{Ans.}

Tension in members, failure across two bolts,

\[A_t = \frac{5}{16} \left[2.375 - 2(1/4) \right] = 0.5859 \text{ in}^2 \]

\[\sigma_t = \frac{F}{A_t} = \frac{5}{0.5859} = 8.534 \text{ kpsi} \]

\[n = \frac{S_y}{\sigma_t} = \frac{57}{8.534} = 6.68 \quad \text{Ans.} \]

8-71 By symmetry, the reactions at each support is 1.6 kN. The free-body diagram for the left member is

\[\sum M_B = 0 \quad 1.6(250) - 50R_A = 0 \Rightarrow R_A = 8 \text{ kN} \]

\[\sum M_A = 0 \quad 200(1.6) - 50R_B = 0 \Rightarrow R_B = 6.4 \text{ kN} \]

Members: Table A-20, \(S_y = 370 \text{ MPa} \)
Bolts: Table 8-11, \(S_y = 420 \text{ MPa}, S_{sy} = 0.577(420) = 242.3 \text{ MPa} \)

Bolt shear, \(A_s = \frac{\pi}{4} (12^2) = 113.1 \text{ mm}^2 \)

\[\tau = \frac{F_{\max}}{A_s} = \frac{8(10^3)}{113.1} = 70.73 \text{ MPa} \]

\[n = \frac{S_y}{\tau} = \frac{242.3}{70.73} = 3.43 \]

Bearing on member, \(A_b = td = 10(12) = 120 \text{ mm}^2 \)

\[\sigma_b = -\frac{8(10^3)}{120} = -66.67 \text{ MPa} \]

\[n = \frac{S_y}{|\sigma_b|} = \frac{370}{66.67} = 5.55 \]
Strength of member. The bending moments at the hole locations are:
in the left member at \(A \), \(M_A = 1.6(200) = 320 \text{ N} \cdot \text{m} \). In the right member at \(B \), \(M_B = 8(50) = 400 \text{ N} \cdot \text{m} \). The bending moment is greater at \(B \)

\[
I_B = \frac{1}{12} [10(50^3) - 10(12^3)] = 102.7(10^3) \text{ mm}^4
\]

\[
\sigma_B = \frac{M_A c}{I_A} = \frac{400(25)}{102.7(10^3)}(10^3) = 97.37 \text{ MPa}
\]

\[
n = \frac{S_y}{\sigma_A} = \frac{370}{97.37} = 3.80
\]

At the center, call it point \(C \),

\[M_C = 1.6(350) = 560 \text{ N} \cdot \text{m} \]

\[
I_C = \frac{1}{12} (10)(50^3) = 104.2(10^3) \text{ mm}^4
\]

\[
\sigma_C = \frac{M_C c}{I_C} = \frac{560(25)}{104.2(10^3)}(10^3) = 134.4 \text{ MPa}
\]

\[
n = \frac{S_y}{\sigma_C} = \frac{370}{134.4} = 2.75 < 3.80 \quad \text{more critical at} \ C
\]

\[
n = \text{min}(3.04, 3.80, 2.75) = 2.72 \quad \text{Ans.}
\]

8-72 The free-body diagram of the bracket, assuming the upper bolt takes all the shear and tensile load is

\[
F_s = 2500 \text{ lbf}
\]

\[
P = \frac{2500(3)}{7} = 1071 \text{ lbf}
\]

Table A-31, \(H = 7/16 = 0.4375 \text{ in} \). Grip, \(l = 2(1/2) = 1 \text{ in} \). \(L \geq l + H = 1.4375 \text{ in} \). Use 1.5 in bolts.

Eq. (8-13), \(L_T = 2d + 0.25 = 2(0.5) + 0.25 = 1.25 \text{ in} \)

Table 8-7, \(l_d = L - L_T = 1.5 - 1.25 = 0.25 \text{ in} \)
Table 8-2, \[l_t = l - l_d = 1 - 0.25 = 0.75 \text{ in} \]
\[A_t = 0.1419 \text{ in}^2 \]
\[A_d = \pi (0.5^2) / 4 = 0.1963 \text{ in}^2 \]

Eq. (8-17), \[k_b = \frac{A_d A E}{A_d l_t + A_t l_d} = \frac{0.1963 (0.1419) 30}{0.1963 (0.75) + 0.1419 (0.25)} = 4.574 \text{ Mlbf/in} \]

Eq. (8-22),
\[k_m = \frac{0.5774 \pi E d}{2 \ln \left(\frac{5}{0.5774 l + 0.5 d} \right)} = \frac{0.5774 \pi (30) 0.5}{2 \ln \left(\frac{5}{0.5774 (1) + 0.5 (0.5)} \right)} = 16.65 \text{ Mlbf/in} \]
\[C = \frac{k_b}{k_b + k_m} = \frac{4.574}{4.574 + 16.65} = 0.216 \]

Table 8-9, \[S_p = 65 \text{ kpsi} \]

Eqs. (8-31) and (8-32), \[F_i = 0.75 A_t S_p = 0.75 (0.1419) 65 = 6.918 \text{ kips} \]
\[\sigma_i = 0.75 S_p = 0.75 (65) = 48.75 \text{ kips} \]

Eq. (a), p. 440, \[\sigma_b = \frac{C P + F_i}{A_t} = \frac{0.216 (1.071) + 6.918}{0.1419} = 50.38 \text{ kpsi} \]

Direct shear, \[\tau_s = \frac{F_s}{A_t} = \frac{3}{0.1419} = 21.14 \text{ kpsi} \]

von Mises stress, Eq. (5-15), p. 223
\[\sigma' = (\sigma_b^2 + 3 \tau_s^2)^{1/2} = \left[50.38^2 + 3 (21.14^2)\right]^{1/2} = 62.3 \text{ kpsi} \]

Stress margin, \[m = S_p - \sigma' = 65 - 62.3 = 3.7 \text{ kpsi} \]

Ans.

8-73

\[2 P(200) = 14(50) \]
\[P = \frac{14(50)}{2(200)} = 1.75 \text{ kN per bolt} \]
\[F_s = 7 \text{ kN/bolt} \]
\[S_p = 380 \text{ MPa} \]

\[A_t = 245 \text{ mm}^2, \ A_d = \frac{\pi (20^2)}{4} = 314.2 \text{ mm}^2 \]
\[F_i = 0.75(245)(380)(10^{-3}) = 69.83 \text{ kN} \]
\[\sigma_i = 0.75(380) = 285 \text{ MPa} \]
\[\sigma_b = \frac{CP + F_i}{A_i} = \left(\frac{0.25(1.75) + 69.83}{245} \right) (10^3) = 287 \text{ MPa} \]
\[\tau = \frac{F_x}{A_d} = \frac{7(10^3)}{314.2} = 22.3 \text{ MPa} \]
\[\sigma' = [287^2 + 3(22.3^2)]^{1/2} = 290 \text{ MPa} \]
\[m = S_p - \sigma' = 380 - 290 = 90 \text{ MPa} \]

Stress margin, \(m = S_p - \sigma' = 380 - 90 = 90 \text{ MPa} \quad \text{Ans.} \)

8-74 Using the result of Prob. 5-67 for lubricated assembly (replace 0.2 with 0.18 per Table 8-15)

\[F_x = \frac{2\pi f}{0.18d} \]

With a design factor of \(n_d \) gives

\[T = \frac{0.18n_d F_x d}{2\pi f} = \frac{0.18(3)(1000)d}{2\pi(0.12)} = 716d \]

or \(T/d = 716 \). Also,

\[\frac{T}{d} = K(0.75S_p A_i) \]
\[= 0.18(0.75)(85\ 000)A_i \]
\[= 11\ 475A_i \]

Form a table

<table>
<thead>
<tr>
<th>Size</th>
<th>(A_i)</th>
<th>(T/d = 11\ 475A_i)</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{4}) - 28</td>
<td>0.0364</td>
<td>417.70</td>
<td>1.75</td>
</tr>
<tr>
<td>(\frac{5}{16}) - 24</td>
<td>0.058</td>
<td>665.55</td>
<td>2.8</td>
</tr>
<tr>
<td>(\frac{3}{8}) - 24</td>
<td>0.0878</td>
<td>1007.50</td>
<td>4.23</td>
</tr>
</tbody>
</table>

where the factor of safety in the last column of the table comes from

\[n = \frac{2\pi f (T/d)}{0.18F_x} = \frac{2\pi(0.12)(T/d)}{0.18(1000)} = 0.0042(T/d) \]

Select a \(\frac{3}{8} \) - 24 UNF cap screw. The setting is given by

\[T = (11\ 475A_i)d = 1007.5(0.375) = 378 \text{ lbf} \cdot \text{in} \]

Given the coarse scale on a torque wrench, specify a torque wrench setting of 400 lbf \cdot in. Check the factor of safety
Bolts, from Table 8-11, $S_y = 420$ MPa
Channel, From Table A-20, $S_y = 170$ MPa. From Table A-7, $t = 6.4$ mm
Cantilever, from Table A-20, $S_y = 190$ MPa

\[F'_{A} = F'_{B} = F'_{C} = \frac{F}{3} \]
\[M = (50 + 26 + 125) F = 201 F \]
\[F'_{A} = F'_{C} = \frac{201F}{2(50)} = 2.01F \]

Max. force, \(F_C = F'_C + F''_C = \left(\frac{1}{3} + 2.01\right)F = 2.343F \) \hspace{1cm} (1)

Shear on Bolts: The shoulder bolt shear area, \(A_s = \pi(10^2) / 4 = 78.54 \text{ mm}^2 \)
\[S_{sy} = 0.577(420) = 242.3 \text{ KPa} \]
\[\tau_{\text{max}} = \frac{F_C}{A_s} = \frac{S_{sy}}{n} \]

From Eq. (1), \(F_C = 2.343 F \). Thus
\[F = \frac{S_{sy}}{n} \left(\frac{A_s}{2.343} \right) = \frac{242.3\left(78.54\right)}{2.343} \times 10^{-3} = 4.06 \text{ kN} \]

Bearing on bolt: The bearing area is \(A_b = td = 6.4(10) = 64 \text{ mm}^2 \). Similar to shear
Bearing on channel: \(A_b = 64 \text{ mm}^2, \ S_y = 170 \text{ MPa}. \)

\[
F = \frac{S_y}{n} \left(\frac{A_b}{2.343} \right) = \frac{170}{2.0} \left(\frac{64}{2.343} \right) 10^{-3} = 2.32 \text{ kN}
\]

Bearing on cantilever: \(A_b = 12(10) = 120 \text{ mm}^2, \ S_y = 190 \text{ MPa}. \)

\[
F = \frac{S_y}{n} \left(\frac{A_b}{2.343} \right) = \frac{190}{2.0} \left(\frac{120}{2.343} \right) 10^{-3} = 4.87 \text{ kN}
\]

Bending of cantilever: At \(C \)

\[
I = \frac{1}{12} (12) (50^3 - 10^3) = 1.24 \left(10^5 \right) \text{ mm}^4
\]

\[
\sigma_{\text{max}} = \frac{S_y}{n} = \frac{Mc}{I} = \frac{151F_c}{I} \Rightarrow F = \frac{S_y}{n} \left(\frac{I}{151c} \right)
\]

\[
F = \frac{190}{2.0} \left[\frac{1.24 \left(10^5 \right)}{151(25)} \right] 10^{-3} = 3.12 \text{ kN}
\]

So \(F = 2.32 \text{ kN} \) based on bearing on channel. \(\text{Ans.} \)

8-76 Bolts, from Table 8-11, \(S_y = 420 \text{ MPa} \)
Bracket, from Table A-20, \(S_y = 210 \text{ MPa} \)

\[
F' = \frac{12}{3} = 4 \text{ kN}; \ M = 12(200) = 2400 \text{ N} \cdot \text{m}
\]

\[
F'' = F^* = \frac{2400}{64} = 37.5 \text{ kN}
\]

\[
F_A = F_B = \sqrt{(4)^2 + (37.5)^2} = 37.7 \text{ kN}
\]

\[
F_O = 4 \text{ kN}
\]

Bolt shear:
The shoulder bolt shear area, \(A_s = \pi(12^2) / 4 = 113.1 \text{ mm}^2 \)

\[
S_{sy} = 0.577(420) = 242.3 \text{ KPa}
\]
\[
\tau = \frac{37.7(10)^3}{113} = 333 \text{ MPa}
\]
\[
n = \frac{S_{yx}}{\tau} = \frac{242.3}{333} = 0.728 \quad \text{Ans.}
\]

Bearing on bolts:
\[
A_b = 12(8) = 96 \text{ mm}^2
\]
\[
\sigma_b = -\frac{37.7(10)^3}{96} = -393 \text{ MPa}
\]
\[
n = \frac{S_{yx}}{|\sigma_b|} = \frac{420}{393} = 1.07 \quad \text{Ans.}
\]

Bearing on member:
\[
\sigma_b = -393 \text{ MPa}
\]
\[
n = \frac{S_{yx}}{|\sigma_b|} = \frac{210}{393} = 0.534 \quad \text{Ans.}
\]

Bending stress in plate:
\[
I = \frac{bh^3}{12} - \frac{bd^3}{12} - 2\left(\frac{bd^3}{12} + a^2bd\right)
\]
\[
= \frac{8(136)^3}{12} - \frac{8(12)^3}{12} - 2\left[\frac{8(12)^3}{12} + (32)^2(8)(12)\right]
\]
\[
= 1.48(10)^6 \text{ mm}^4 \quad \text{Ans.}
\]
\[
\sigma = \frac{Mc}{I} = \frac{2400(68)}{1.48(10)^6} (10)^3 = 110 \text{ MPa}
\]
\[
n = \frac{S_y}{\sigma} = \frac{210}{110} = 1.91 \quad \text{Ans.}
\]

Failure is predicted for bolt shear and bearing on member.
Bolt shear:

\[
A_s = \left(\frac{\pi}{4}\right)(0.375^2) = 0.1104 \text{ in}^2
\]

\[
\tau_{\text{max}} = \frac{F_{\text{max}}}{A_s} = \frac{1333}{0.1104} = 12,070 \text{ psi}
\]

From Table 8-10, \(S_y = 100 \text{ kpsi} \), \(S_{sy} = 0.577(100) = 57.7 \text{ kpsi} \)

\[
n = \frac{S_y}{\tau_{\text{max}}} = \frac{57.7}{12.07} = 4.78 \quad \text{Ans.}
\]

Bearing on bolt: Bearing area is \(A_b = td = 0.375(0.375) = 0.1406 \text{ in}^2 \).

\[
\sigma_b = -\frac{F}{A_b} = -\frac{1333}{0.1406} = -9,481 \text{ psi}
\]

\[
n = \frac{S_y}{|\sigma_b|} = \frac{100}{9,481} = 10.55 \quad \text{Ans.}
\]

Bearing on member: From Table A-20, \(S_y = 54 \text{ kpsi} \). Bearing stress same as bolt

\[
n = \frac{S_y}{|\sigma_b|} = \frac{54}{9,481} = 5.70 \quad \text{Ans.}
\]

Bending of member: At \(B \), \(M = 250(13) = 3250 \text{ lbf} \cdot \text{in} \)
\[I = \frac{1}{12} \left(\frac{3}{8} \right) \left[2^3 - \left(\frac{3}{8} \right)^3 \right] = 0.2484 \text{ in}^4 \]

\[\sigma = \frac{Mc}{I} = \frac{3250 \times (1)}{0.2484} = 13080 \text{ psi} \]

\[n = \frac{S_y}{\sigma} = \frac{54}{13.08} = 4.13 \quad \text{Ans.} \]

8-78 The direct shear load per bolt is \(F' = 2000/6 = 333.3 \text{ lbf} \). The moment is taken only by the four outside bolts. This moment is \(M = 2000(5) = 10000 \text{ lbf} \cdot \text{in} \).

Thus \(F' = \frac{10000}{2(5)} = 1000 \text{ lbf} \) and the resultant bolt load is

\[F = \sqrt{(333.3)^2 + (1000)^2} = 1054 \text{ lbf} \]

Bolt strength, Table 8-9, \(S_y = 100 \text{ kpsi} \); Channel and Plate strength, \(S_y = 42 \text{ kpsi} \)

Shear of bolt: \(A_s = \pi (0.5)^2/4 = 0.1963 \text{ in}^2 \)

\[n = \frac{S_{sy}}{\tau} = \frac{(0.577)(100)}{1.054 / 0.1963} = 10.7 \quad \text{Ans.} \]

Bearing on bolt: Channel thickness is \(t = 3/16 \text{ in} \), \(A_b = 0.5(3/16) = 0.09375 \text{ in}^2 \)

\[n = \frac{100}{1.054 / 0.09375} = 8.89 \quad \text{Ans.} \]

Bearing on channel: \(n = \frac{42}{1.054 / 0.09375} = 3.74 \quad \text{Ans.} \)

Bearing on plate: \(A_b = 0.5(0.25) = 0.125 \text{ in}^2 \)

\[n = \frac{42}{1.054 / 0.125} = 4.98 \quad \text{Ans.} \]

Strength of plate:

\[I = \frac{0.25(7.5)^3}{12} - \frac{0.25(0.5)^3}{12} \]

\[- 2 \left[\frac{0.25(0.5)^3}{12} + (0.25)(0.5)(2.5)^2 \right] = 7.219 \text{ in}^4 \]
\[M = 5000 \text{ lbf} \cdot \text{in per plate} \]
\[\sigma = \frac{Mc}{I} = \frac{5000(3.75)}{7.219} = 2597 \text{ psi} \]
\[n = \frac{42}{2.597} = 16.2 \quad \text{Ans.} \]

8-79 to 8-81 Specifying bolts, screws, dowels and rivets is the way a student learns about such components. However, choosing an array a priori is based on experience. Here is a chance for students to build some experience.