First Course on

POWER SYSTEMS

Ned Mohan

Oscar A. Schott Professor of Power Electronics and Systems
Department of Electrical and Computer Engineering
University of Minnesota
Minneapolis, MN 55455
USA
A 345-kV Example System
TOPICS IN POWER SYSTEMS

<table>
<thead>
<tr>
<th>Week</th>
<th>Book Chapters</th>
<th>Laboratory</th>
</tr>
</thead>
</table>
| 1 | Chapter 1: Overview
Chapter 2: Fundamentals | Lab 1: Visit to a local substation; otherwise a virtual substation |
| 2 | Chapter 3: Energy Sources | Lab 2: Introduction to PSCAD/EMTDC; 3-phase circuits, vars, power-factor correction |
| 3 | Chapter 4: Transmission Lines | Lab 3: Transmission Lines using PSCAD-EMTDC |
| 4 | Chapter 5: Power Flow | Lab 4: Power Flow using MATLAB and PowerWorld |
| 5 | Chapter 6: Transformers | Lab 5: Including Transformers in Power Flow using PowerWorld and MATLAB |
| 6 | Chapter 7: HVDC, FACTS | Lab 6: Power Converters and HVDC using PSCAD-EMTDC, HVDC in PowerWorld |
| 7 | Chapter 8: Distribution Systems | Lab 7: Power Quality using PSCAD-EMTDC |
| 8 | Chapter 9: Synchronous Generators | Lab 8: Synchronous Generators and AVR using PSCAD-EMTDC. |
| 9 | Chapter 10: Voltage Stability | Lab 9: Voltage Regulation using PowerWorld |
| 10 | Chapter 11: Transient Stability | Lab 10: Transient Stability using MATLAB |
| 12 | Chapter 13: Short-Circuit Faults, Relays, Circuit Breakers | Lab 12: Transmission Line Faults using PowerWorld and MATLAB |
| 13 | Chapter 14: Transient Over-Voltages, Surge Arrestors, Insulation Coordination | Lab 13: Over-voltages and Surge Arrestors using PSCAD-EMTDC |
Chapter 1

POWER SYSTEMS: A CHANGING LANDSCAPE
Fig. 1-1 Interconnected North American Power Grid [2].
Control Areas

Fig. 1-2 NERC Interconnections [3]. Source: NERC.
One-line Diagram

Fig. 1-3 One-line diagram as an example.
Fig. 1-4 Changing landscape [4]. Source: ABB.
CHAPTER 2

REVIEW OF BASIC ELECTRIC CIRCUITS AND ELECTROMAGNETIC CONCEPTS
Symbols and Conventions

Fig. 2-1 Convention for voltages and currents.
Phasors

Fig. 2-2 Phasor diagram.

\[\bar{V} = V \angle 0 \]

\[\bar{I} = I \angle -\phi \]
Fig. 2-3 A circuit (a) in time-domain and (b) in phasor-domain; (c) impedance triangle.
Example of Impedance Calculation

Fig. 2-4 Impedance network of Example 2-1.
Example of Impedance Calculation

Fig. 2-5 Circuit of Example 2-2.
Figure 2-6 A generic circuit divided into two sub-circuits.
Real and Reactive Power

Figure 2-7 Instantaneous power with sinusoidal currents and voltages.
P, Q and VA by Phasors

Fig. 2-8 (a) Circuit in phasor-domain; (b) phasor diagram; (c) power triangle.
Example of Power Factor Correction

Fig. 2-9 Power factor correction in Example 2-5.
Fig. 2-10 One-line diagram of a three-phase transmission and distribution system.
Three-Phase Voltages

Fig. 2-11 Three-phase voltages in time and phasor domain.
Balanced Three-Phase Circuit Analysis

Fig. 2-12 Balanced wye-connected, three-phase circuit.
Per-Phase Analysis

Fig. 2-13 Per-phase circuit and the corresponding phasor diagram.
Fig. 2-14 Balanced three-phase network with mutual couplings.
Fig. 2-15 Line-to-line voltages in a three-phase circuit.
Wye-Delta Transformation

Fig. 2-16 Delta-wye transformation.
Power Flow in AC Systems

Fig. 2-17 Power transfer between two ac systems.
Power-Angle Diagram

Fig. 2-18 Power as a function of δ.

P/P_{max} vs δ
Per Unit Quantities

\[R_{\text{base}}, X_{\text{base}}, Z_{\text{base}} = \frac{V_{\text{base}}}{I_{\text{base}}} \quad \text{(in } \Omega) \quad (2-48) \]

\[G_{\text{base}}, B_{\text{base}}, Y_{\text{base}} = \frac{I_{\text{base}}}{V_{\text{base}}} \quad \text{(in } \Omega) \quad (2-49) \]

\[P_{\text{base}}, Q_{\text{base}}, (VA)_{\text{base}} = V_{\text{base}}I_{\text{base}} \quad \text{(in Watt, VAR, or VA)} \quad (2-50) \]

In terms of these base quantities, the per-unit quantities can be specified as

\[\text{Per-Unit Value} = \frac{\text{actual value}}{\text{base value}} \quad (2-51) \]
Energy Efficiency of Apparatus

\[\eta = \frac{P_o}{P_{in}} \]

Fig. 2-19 Energy Efficiency \(\eta = \frac{P_o}{P_{in}} \).
Electro-Magnetic Concepts: Ampere’s Law

Fig. 2-20 Ampere’s Law.
Example of a Toroid

Fig. 2-21 Example 2-9.
Fig. 2-22 B-H characteristic of ferromagnetic materials.
Flux and Flux-Density

Fig. 2-23 Toroid with flux ϕ_m.
Fig. 2-24 Coil inductance.
Example of a Toroid

Fig. 2-25 Rectangular toroid.
Faraday’s Law

Fig. 2-26 Voltage polarity and direction of flux and current.
Plot of time-varying Flux and Voltage

Fig. 2-27 Example 2-11.
Leakage Flux

Fig. 2-28 Including leakage flux.
Fig. 2-29 Analysis including the leakage flux.
CHAPTER 3

ELECTRIC ENERGY AND THE ENVIRONMENT
Energy Consumption and Production in the U.S.

Fig. 3-1 Production and consumption of energy in the United States in 2004 [1].
Power Generation by Various Fuel Types in the U.S.

Fig. 3-2 Electric power generation by various fuel types in the U.S. in 2005 [1].
Hydro Power Generation

Fig. 3-3 Hydro power (Source: www.bpa.gov).
Fig. 3-4 Rankine thermodynamic cycle in coal-fired power plants.

Visit the following website for Power Plant Animations:
http://www.cf.missouri.edu/energy/?fun=1&flash=ppmap
Brayton Cycle in Gas Turbines

Fig. 3-5 Brayton thermodynamic cycle in natural-gas power plants.
Fig. 3-6 (a) BWR and (b) PWR reactors [5].

Visit the following websites for Nuclear Power Plant Animations:

PWR: http://www.nrc.gov/reading-rm/basic-ref/students/animated-pwr.html
BWR: http://www.nrc.gov/reading-rm/basic-ref/students/animated-bwr.html
Wind Resources in the U.S.

Fig. 3-7 Wind-resource map of the United States [6].
Fig. 3-8 c_p as a function of λ [7]; these would vary based on the turbine design.
Wind Generation using an Induction Generator Connected Directly to the AC Grid

Fig. 3-9 Induction generator directly connected to the grid [8].
Wind Generation using a Doubly-Fed Induction Generator

Fig. 3-10 Doubly-fed, wound-rotor induction generator [9].
Wind Generation using an AC Generator Connected through Power Electronics

Fig. 3-11 Power Electronics connected generator [10].
Fig. 3-12 PV cell characteristics [11].
Interfacing PV with AC Grid

Fig. 3-13 Photovoltaic systems.
Fuel Cells

Fig. 3-14 Fuel cell v-i relationship and cell power [12].
Greenhouse Effect

Fig. 3-15 Greenhouse effect [13].
Fig. 3-16 Resource mix at XcelEnergy [14].
Fig. 3-17 Electric power industry fuel costs in the U.S. in 2005 [1].
CHAPTER 4

AC TRANSMISSION LINES AND UNDERGROUND CABLES
Transmission Tower, Conductor and Bundling

Fig. 4-1 500-kV transmission line (Source: University of Minnesota EMTP course).
Fig. 4-2 Transposition of transmission lines.
Distributed Parameters

Fig. 4-3 Distributed parameter representation on a per-phase basis.
Fig. 4-4 (a) Cross-section of ACSR conductors, (b) skin-effect in a solid conductor.
Calculation of Transmission Line Inductance

Fig. 4-5 Flux linkage with conductor-a.
Electric Field Due to Transmission Line Voltage

Fig. 4-6 Electric field due to a charge.
Calculation of Transmission Line Capacitance

Fig. 4-7 Shunt capacitances.
Typical Parameters for various Voltage Transmission Lines

Table 4-1
Transmission Line Parameters with Bundled Conductors (except at 230 kV) at 60 Hz [2, 6]

<table>
<thead>
<tr>
<th>Nominal Voltage</th>
<th>$R (Ω/ km)$</th>
<th>$ωL (Ω/ km)$</th>
<th>$ωC (μF/ km)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 kV</td>
<td>0.055</td>
<td>0.489</td>
<td>3.373</td>
</tr>
<tr>
<td>345 kV</td>
<td>0.037</td>
<td>0.376</td>
<td>4.518</td>
</tr>
<tr>
<td>500 kV</td>
<td>0.029</td>
<td>0.326</td>
<td>5.220</td>
</tr>
<tr>
<td>765 kV</td>
<td>0.013</td>
<td>0.339</td>
<td>4.988</td>
</tr>
</tbody>
</table>
Calculating Transmission Line Parameters using EMTDC

Fig. 4-8 A 345-kV, single-conductor per phase, transmission system.
Distributed-Parameter Representation

Fig. 4-9 Distributed per-phase transmission line (G not shown).
Voltage Profile under SIL

Fig. 4-10 Per-phase transmission line terminated with a resistance equal to Z_c.
Typical Surge Impedances and SIL for various Voltage Transmission Lines

Table 4-2
Surge Impedance and Three-Phase Surge Impedance Loading [2, 6]

<table>
<thead>
<tr>
<th>Nominal Voltage</th>
<th>$Z_c (\Omega)$</th>
<th>SIL (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 kV</td>
<td>375</td>
<td>140 MW</td>
</tr>
<tr>
<td>345 kV</td>
<td>280</td>
<td>425 MW</td>
</tr>
<tr>
<td>500 kV</td>
<td>250</td>
<td>1000 MW</td>
</tr>
<tr>
<td>765 kV</td>
<td>255</td>
<td>2300 MW</td>
</tr>
</tbody>
</table>
Loadability of Transmission Lines

Table 4-3
Loadability of Transmission Lines [6]

<table>
<thead>
<tr>
<th>Line Length (km)</th>
<th>Limiting Factor</th>
<th>Multiple of SIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 80</td>
<td>Thermal</td>
<td>> 3</td>
</tr>
<tr>
<td>80 - 240</td>
<td>5% Voltage Drop</td>
<td>1.5 - 3</td>
</tr>
<tr>
<td>240 - 480</td>
<td>Stability</td>
<td>1.0 – 1.5</td>
</tr>
</tbody>
</table>
Long-Line Representation

\[I_S(s) \quad + \quad Z_{series} \quad - \quad I_R(s) \]

\[V_S(s) \quad \frac{Y_{shunt}}{2} \quad \frac{Y_{shunt}}{2} \quad V_R(s) \]

Fig. 4-11 Long line representation.
Transmission Line Representations

Fig. 4-12 Per-phase transmission line representation based on length.
Underground Cables

Fig. 4-13 Underground cable.
CHAPTER 5

POWER FLOW IN POWER SYSTEM NETWORKS
Three-Bus Example Power System

Fig. 5-1 A three-bus 345-kV example system.
Transmission Lines in Example Power System

Table 5-1 Per-Unit Values in the Example System

<table>
<thead>
<tr>
<th>Line</th>
<th>Series Impedance Z in Ω (pu)</th>
<th>Total Susceptance B in μ＜sup＞Ω＜/sup＞ (pu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>$Z_{12} = (5.55 + j56.4)Ω = (0.0047 + j0.0474)pu$</td>
<td>$B_{Total} = 675μ\Omega = (0.8034)pu$</td>
</tr>
<tr>
<td>1-3</td>
<td>$Z_{13} = (7.40 + j75.2)Ω = (0.0062 + j0.0632)pu$</td>
<td>$B_{Total} = 900μ\Omega = (1.0712)pu$</td>
</tr>
<tr>
<td>2-3</td>
<td>$Z_{23} = (5.55 + j56.4)Ω = (0.0047 + j0.0474)pu$</td>
<td>$B_{Total} = 675μ\Omega = (0.8034)pu$</td>
</tr>
</tbody>
</table>
Calculating Y-Bus in the Example Power System

Fig. 5-2 Example system of Fig. 5-1 for assembling Y-bus matrix.
Fig. 5-3 Plot of $4 - x^2$ as a function of x.
Power Flow Results in the Example Power System

Fig. 5-4 Power-Flow results of Example 5-4.
CHAPTER 6

TRANSFORMERS IN POWER SYSTEMS
Transformer Principle: Generation of Flux

Fig. 6-1 Principle of transformers, beginning with just one coil.
Core in Transformers

Fig. 6-2 B-H characteristics of ferromagnetic materials.
Fig. 6-3 Transformer with the open-circuited second coil.
Transformer with Load Connected to the Secondary

Fig. 6-4 Transformer with load connected to the secondary winding.
Transformer Model

Fig. 6-5 Transformer equivalent circuit including leakage impedances and core losses.
Fig. 6-6 Eddy currents in the transformer core.
Transformer Simplified Model

Fig. 6-7 Simplified transformer model.
Transferring Leakage Impedances from One Side to Another

Fig. 6-8 Transferring leakage impedances across the ideal transformer of the model.
Fig. 6-9 Transformer equivalent circuit in per unit (pu).
Connection of Transformer Windings

Fig. 6-10 Winding connections in a three-phase system.
Fig. 6-11 Including nominal-voltage transformers in per-unit.
Auto-Transformer

Fig. 6-12 Auto-transformer.
Phase-Shift Due to Wye-Delta Transformers

Fig. 6-13 Phase-shift in Δ-Y connected transformers.
Phase-Shift Control by Transformers

Fig. 6-14 Transformer for phase-angle control.
Three-Winding Auto-Transformers

Fig. 6-15 Three-winding auto-transformer.
Fig. 6-16 General representation of an auto-transformer and a phase-shifter.
PU Representation of Off-Nominal Turns-Ratio Transformers

Fig. 6-17 Transformer with an off-nominal turns-ratio or taps in per unit; t is real.
Example of Off-Nominal Turns-Ratio Transformers

Fig. 6-18 Transformer of Example 6-3.

(a)

(b)
CHAPTER 7

HIGH VOLTAGE DC (HVDC) TRANSMISSION SYSTEMS
Symbols and Capabilities of Power Semiconductor Devices

Symbols and Capabilities of Power Semiconductor Devices

Fig. 7-1 Power semiconductor devices.
Figure 7-2 Power semiconductor devices: (a) ratings (source: Siemens), (b) various applications (source: ABB).
Fig. 7-3 HVDC system – one-line diagram.
Fig. 7-4 HVDC systems: (a) Current-Link, and (b) Voltage-Link.
Fig. 7-5 HVDC projects, mostly current-link systems, in North America [source: ABB]
Current-Link HVDC System

Fig. 7-6 Block diagram of a current-link HVDC system.
Thyristors

Fig. 7-7 Thyristors.
Fig. 7-8 Thyristor circuit with a resistive load and a series inductance.
Three-Phase Thyristor Converter

Fig. 7-9 Three-phase Full-Bridge thyristor converter.
Fig. 7-10 Waveforms in a three-phase rectifier with $L_s = 0$ and $\alpha = 0$.

Three-Phase Diode Rectifier Waveforms
Three-Phase Thyristor Converter Waveforms with zero AC-Side Inductance

Fig. 7-11 Waveforms with $L_s = 0$.
Three-Phase Inverter Waveforms

Fig. 7-12 Waveforms in the inverter mode.
DC-Side Voltage as a Function of Delay Angle

Fig. 7-13 Average dc-side voltage as a function of α.

(a) Rectifier $P = V_d I_d = +$

(b) Inverter $P = V_d I_d = -$
Thyristor Converter Waveforms in the Presence of AC-Side Inductance

Fig. 7-14 Waveforms with L_s.
Power Factor Angle in Rectifier and Inverter Modes

Fig. 7-15 Power-factor angle.
12-Pulse Waveforms

Fig. 7-17 Six-pulse and 12-pulse current and voltage waveforms [2].
HVDC System Representation for Control

Fig. 7-18 A pole of an HVDC system.
Control of HVDC Converters

Fig. 7-19 Control of an HVDC system [3].
Fig. 7-20 Voltage-link HVDC transmission system [source: ABB].
Voltage-Link HVDC System Block Diagram

Fig. 7-21 Block diagram of voltage-link HVDC system.
Fig. 7-22 Block diagram of a voltage-link converter and the phasor diagram.
Fig. 7-23 Synthesis of sinusoidal voltages.

Representation of Voltage-Link Converter with Ideal Transformers
Synthesis of “Average” Sinusoidal Voltages

Fig. 7-24 Sinusoidal variation of turns-ratio d_a.
Converter Output Voltages and Voltages across the Load

Converter Output Voltages and Voltages across the Load

Fig. 7-25 Three-phase synthesis.

Fig. 7-25 Three-phase synthesis.
Switching Power-Pole of Voltage-Link Converters

Fig. 7-26 Realization of the ideal transformer functionality.
Switching in Sinusoidal “Average” Voltage Waveform

Fig. 7-27 PWM to synthesize sinusoidal waveform.
CHAPTER 8

Distribution System, Loads and Power Quality
Residential Distribution System

Fig. 8-1 Residential distribution system.
Daily Load and Load-Duration Curves

Fig. 8-2 System load.
Utility Load Distribution

Fig. 8-3 Utility loads.
Power Factor and Voltage Sensitivity of Power Systems Load

Table 8-1 Power Factor and Voltage Sensitivity of Power Systems Load

<table>
<thead>
<tr>
<th>Type of Load</th>
<th>Power Factor</th>
<th>$a = \partial P / \partial V$</th>
<th>$b = \partial Q / \partial V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Heating</td>
<td>1.0</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>Incandescent Lighting</td>
<td>1.0</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>Fluorescent Lighting</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Motor Loads</td>
<td>0.8 – 0.9</td>
<td>0.05 – 0.5</td>
<td>1.0 – 3.0</td>
</tr>
<tr>
<td>Modern Power-Electronics based</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Loads</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 8-4 Voltage-link-system for modern and future power-electronics based loads.
Fig. 8-5 Per-phase, steady state equivalent circuit of a three-phase induction motor.
Fig. 8-6 Torque-speed characteristic of induction motor at various applied frequencies.
Switch-Mode DC Power Supplies

Fig. 8-7 Switch-mode dc power supply.
Uninterruptible Power Supplies (UPS)

Fig. 8-8 Uninterruptible power supply.
Static Power-Transfer Switch

Feeder 1

Load

Feeder 2

Fig. 8-9 Alternate feeder.
CBEMA Curve Showing Acceptable Voltage-Time Region

Fig. 8-10 CBEMA curve.
Dynamic Voltage Restorers (DVR)

Fig. 8-11 Dynamic Voltage Restorer (DVR).
Voltage Regulating Transformers

Fig. 8-12 Three-Phase Voltage Regulator (Courtesy of Siemens) [5].
Fig. 8-13 STATCOM [4].
Linear Load

Figure 8-14 Voltage and current phasors in simple $R-L$ circuit.
Waveforms Associated with Power Electronics-Based Load

Figure 8-15 Current drawn by power electronics equipment without PFC.
Example of Distorted Current

Figure 5-4 Example 5-1.

Figure 8-16 Example 8-1.
Influence of Distortion on Power Factor

Fig. 8-17 Relation between PF/DPF and THD.
IEEE Harmonic Limits

Table 8-1 Harmonic current distortion \((I_h / I_1)\)

<table>
<thead>
<tr>
<th>(I_{sc} / I_1)</th>
<th>(h < 11)</th>
<th>(11 \leq h < 17)</th>
<th>(17 \leq h < 23)</th>
<th>(23 \leq h < 35)</th>
<th>(35 \leq h)</th>
<th>Total Harmonic Distortion(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20</td>
<td>4.0</td>
<td>2.0</td>
<td>1.5</td>
<td>0.6</td>
<td>0.3</td>
<td>5.0</td>
</tr>
<tr>
<td>20 – 50</td>
<td>7.0</td>
<td>3.5</td>
<td>2.5</td>
<td>1.0</td>
<td>0.5</td>
<td>8.0</td>
</tr>
<tr>
<td>50 – 100</td>
<td>10.0</td>
<td>4.5</td>
<td>4.0</td>
<td>1.5</td>
<td>0.7</td>
<td>12.0</td>
</tr>
<tr>
<td>100 – 1000</td>
<td>12.0</td>
<td>5.5</td>
<td>5.0</td>
<td>2.0</td>
<td>1.0</td>
<td>15.0</td>
</tr>
<tr>
<td>> 1000</td>
<td>15.0</td>
<td>7.0</td>
<td>6.0</td>
<td>2.5</td>
<td>1.4</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Figure 8-18 (a) Utility Supply, (b) Short-Circuit Current.
Retail Price of Electricity in the U.S.

Fig. 8-19 Average retail price of electricity to ultimate customers [4].
CHAPTER 9

SYNCHRONOUS GENERATORS
Fig. 9-1 Synchronous generators driven by (a) steam turbines, and (b) hydraulic turbines.
Cross-section of Synchronous Generators

Fig. 9-2 Machine cross-section.
Synchronous Generator Structure

Fig. 9-3 Machine structure.
Sinusoidally-Distributed Windings

Fig. 9-4 Three phase windings on the stator.
Three-Phase Winding Connection in a Wye

Fig. 9-5 Connection of three phase windings.
Fig. 9-6 Field winding on the rotor that is supplied by a dc current I_f.

Synchronous Generator
Rotor Field
Voltage induced in the Stator Phase due to Rotating Rotor Field

Fig. 9-7 Current direction and voltage polarities; the rotor position shown induces maximum e_a.
Fig. 9-8 Induced emf e_{af} due to rotating rotor field with the rotor.
Armature Reaction Due to Three Stator Currents

Fig. 9-9 Armature reaction due to phase currents.
Fig. 9-10 Phasor diagram and per-phase equivalent circuit.
Power Out as a function of rotor Angle

Fig. 9-11 Power output and synchronism.
Steady State Stability Limit

Fig. 9-12 Steady state stability limit.
Reactive Power Control by Field Excitation

Fig. 9-13 Excitation control to supply reactive power.
Fig. 9-14 Synchronous Condenser.
Automatic Voltage Regulation (AVR)

Fig. 9-15 Field exciter for automatic voltage regulation (AVR).
Armature Reaction Flux in Steady State Leading to Synchronous Reactance

Fig. 9-16 Armature reaction flux in steady state.
Simulation of a Short-Circuit Assuming a Constant-Flux Model

Fig. 9-17 Armature (a) and field current (b), after a sudden short circuit [source: 4].
Representation for Steady State, Transient Stability and Fault Analysis

Fig. 9-18 Synchronous generator modeling for transient and sub-transient conditions.
CHAPTER 10

VOLTAGE REGULATION AND STABILITY IN POWER SYSTEMS
A Radial System

Fig. 10-1 A radial system.
Voltages and Current Phasors with Both-Side Voltages at 1 PU

Fig. 10-2 Phasor diagram and the equivalent circuit with $V_S = V_R = 1$ pu.
Voltage Profile for Three Values of SIL

Fig. 10-3 Voltage profile along the transmission line.
“Nose” Curves at Three Power Factors as a function of Loading

Fig. 10-4 Voltage collapse in a radial system (example of 345-kV line, 200 km long).
Fig. 10-5 Reactive power supply capability of synchronous generators.
Effect of Current Power Factor on Bus Voltage

Fig. 10-6 Effect of leading and lagging currents due to the shunt compensating device.
Static Var Compensators (SVC)

Fig. 10-7 V-I characteristic of SVC.
Thyristor Controlled Reactors (TCR)

\[\alpha \leq 90^\circ \]

\[\alpha > 90^\circ \]

Fig. 10-8 Thyristor-Controlled Reactor (TCR).

\[V_{bus} \]

\[I_L \]

\[0 \]

\[V_{bus} \]
Voltage Control by SVC and TCR Combination

Fig. 10-9 Parallel combination of SVC and TCR.
Fig. 10-10 STATCOM.
Fig. 10-11 STATCOM VI characteristic.
Fig. 10-12 Thyristor-Controlled Series Capacitors (TCSC) [source: Siemens Corp.].
CHAPTER 11

TRANSIENT AND DYNAMIC STABILITY OF POWER SYSTEMS
Fig. 11-1 Simple one-generator system connected to an infinite bus.
Power-Angle Characteristic in One-Machine Infinite-Bus System

Fig. 11-2 Power-angle characteristics.
Rotor-Angle Swing Following a Fault and a Line Taken Out

Fig. 11-3 Rotor-angle swing in Example 11-1.
Fig. 11-4 Fault on one of the transmission lines.

Power-Angle Characteristics
Rotor Oscillations After the Fault is Cleared

Fig. 11-5 Rotor oscillations after the fault is cleared.
Critical Clearing Angle using Equal-Area Criterion

Fig. 11-6 Critical clearing angle.
Example using Equal-Area Criterion

Fig. 11-7 Power angle curves and equal-area criterion in Example 11-2.
Fig. 11-8 Block diagram of transient stability program for an n-generator case.
Example Power System for Transient Stability Analysis

Fig. 11-9 A 345-kV test example system.
Fig. 11-10 Rotor-angle swings of δ_1 and δ_2 in Example 11-3.
Importance of Dynamic Stability

Fig. 11-11 Growing Power Oscillations: Western USA/Canada system, Aug 10, 1996 [4].
CHAPTER 12

CONTROL OF INTERCONNECTED POWER SYSTEM AND ECONOMIC DISPATCH
Automatic Voltage Regulation (AVR)

Fig. 12-1 Field exciter for automatic voltage regulation (AVR).
Fig. 12-2 (a) The Interconnections in North America, (b) Control Areas [Source: 2]
Fig. 12-3 Load-Frequency Control (ignore the supplementary control at present).
Load Sharing

Fig. 12-4 Response of two generators to load-frequency control.

(a) Load Sharing

(b) Graph showing the response of the two generators to load-frequency control.
Synchronizing Torque between Two Control Areas

Fig. 12-5 Two control areas.
Automatic Generation Control (AGC) and Area Control Error (ACE)

Fig. 12-6 Area Control Error (ACE) for Automatic Generation Control (AGC).
Fig. 12-7 Two control areas in the example power system with 3 buses.
Power Flow on Tie-Lines between Two Control Areas Following a Load Change
Electrical Equivalent of Two Areas

Fig. 12-9 Electrical equivalent of two area interconnection.
Modeling of Two Control Areas with AGC

Fig. 12-10 Two-area system with AGC. Source: adapted from [6].
Results of Simulink Modeling Following a Step Load Change in Control Area 1

Fig. 12-11 Simulink results of the two-area system with AGC in Example 12-3.
Economic Dispatch: Heat Rate of a Power Plant

Fig. 12-12 Heat Rate at various generated power levels.

At this point, to produce 40 MW
Fuel Consumption = 400 MBTU-per-Hour
Cost Curve and Marginal Cost of a Power Plant

Fig. 12-13 (a) Fuel cost and (b) Marginal cost, as functions of the power output.
Fig. 12-14 Marginal costs for the three generators.
CHAPTER 13

TRANSMISSION LINE FAULTS, RELAYING AND CIRCUIT BREAKERS
Fault (Symmetric or Unsymmetric) on a Balanced Network

Fig. 13-1 Fault in power system.
Symmetrical Components

Fig. 13-2 Sequence components.
Sequence Networks: Per-Phase Representation of a Balanced Three-phase representation

Fig. 13-3 Sequence networks.
Three-Phase Symmetrical Fault (ground may or may no be involved)

Fig. 13-4 Three-phase symmetrical fault.
Single-Line to Ground (SLF) Fault through a Fault Impedance

Fig. 13-5 Single line to ground fault.
Double-Line to Ground Fault

Fig. 13-6 Double line to ground fault.
Fig. 13-7 Double line fault (ground not involved).
Path for Zero-Sequence Currents

(a) (b) (c)

Fig. 13-8 Path for zero-sequence currents in transformers.
Neutral Grounded through an Neutral Impedance

Fig. 13-9 Neutral grounded through an impedance.
One-Line Diagram of a Simple System

Fig. 13-10 (a) One-line diagram of a simple power system and bus voltages.
Thee-phase Fault on Bus-2 in the Simple System

Fig. 13-11 Positive-sequence circuit for calculating a 3-phase fault on bus-2.

\[E' \]

\[V_1 = 1.0 \angle 0 \text{ pu} \]

\[R_{load} = 0.9604 \text{ pu} \]
Single-Line to Ground (SLG) Fault in the Simple System

Fig. 13-12 Sequence networks for calculating fault current due to SLG fault on bus-2.
An SLG Fault in the Example 3-Bus System

Fig. 13-13 A SLG fault in the example 3-bus power system.
Protection in Power System

Fig. 13-14 Protection equipment.
Current Transformers (CT)

Fig. 13-15 Current Transformer (CT) [5].
Capacitor-Coupled Voltage Transformers (CCVT)

Fig. 13-16 Capacitor-Coupled Voltage Transformer (CCVT) [5].
Differential Relays

Fig. 13-17 Differential relay.
Directional Over-Current Relays

Fig. 13-18 Directional over-current Relay.
Ground Directional Over-Current Relays for Ground Faults

Fig. 13-19 Ground directional over-current Relay.
Fig. 13-20 Impedance (distance) relay.
Microwave Terminal for Pilot Relays

Fig. 13-21 Microwave terminal [5].
Zones of Protection

Fig. 13-22 Zones of protection.
Protection of Generator and its Step-up Transformer

Fig. 13-23 Protection of generator and the step-up transformer.
Fig. 13-24 Relaying in the example 3-bus power system.
Fig. 13-25 SF_6 circuit breaker [5].
Illustration of Current Offset in R-L Circuits

Fig. 13-26 Current in an RL circuit.
CHAPTER 14

TRANSIENT OVER-VOLTAGES, SURGE PROTECTION AND INSULATION COORDINATION
Fig. 14-1 Lightening current impulse.
Lightening Strike to Shield Wire and Backflash

Fig. 14-2 Lightening strike to the shield wire.
Switching Surges

Fig. 14-3 Over-voltages due to switching of transmission lines.
Fig. 14-4 Frequency dependence of the transmission line parameters [Source: 2].
Calculation of Switching Over-Voltages on Line 1-3 in the Example 3-Bus Power System

Fig. 14-5 Calculation of switching over-voltages on a transmission line.
Standard Voltage Impulse to Define Basic Insulation Level (BIL)

Fig. 14-6 Standard Voltage Impulse Wave to define BIL.
Fig. 14-7 A 345-kV transformer voltage insulation levels.