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ABSTRACT
High Performance Computing (HPC) has recently been con-
siderably improved, for instance General Purpose computa-
tion on Graphics Processing Units (GPGPU) has been devel-
oped to accelerate parallel computing by using hundreds of
cores simultaneously. GPU computing with Compute Uni-
fied Device Architecture (CUDA) is a new approach to solve
complex problems and transform the GPU into a massively
parallel processor. The present study applies this new tech-
nology to a Monte-Carlo simulation for a sea ice load ap-
plication. The goal of this study is to measure the perfor-
mance of the GPU and Multi-GPU against the serial Central
Processing Unit (CPU), parallel CPU (OpenMP), MATLAB
and MATLAB (Parallel for) implementations. Results show a
speedup of up to 89,000 times, and reduction in elapsed time
from about 3 hours to approximately 0.1 second.
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INTRODUCTION
The best methodology for making a significant impact on
HPC is known as GPGPU. This method can be applied by
using graphics processing units to crunch data and acceler-
ate algorithms. GPUs have become a commercially attractive
technology because these chips have the power to run projects
that are computationally intensive. The powerful computa-
tional capabilities of GPUs stem from their vast available par-
allelism and result in a significant speedup compared to con-
ventional CPUs.

The reason behind a lack of computational compatibility be-
tween the CPU and the GPU is that the GPU’s architecture
with large memory bandwidth is specialized for highly paral-
lel and intensive computing. In other words, the architecture
of GPUs is designed such that most of the transistors are de-
voted to data processing rather than data caching and flow
control.

The present study demonstrates how to achieve HPC by uti-
lizing GPU to implement a Monte-Carlo simulation for ex-
treme level sea ice loads. The goal is to analyze this experi-
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ment in a CUDA environment and compare the performance
results with regard to CPU implementations.

Application of Monte-Carlo Simulation
Monte-Carlo simulations are a broad class of numerical algo-
rithms for such problems where it is impractical or impossible
to obtain analytical solutions, as it uses repeated sampling to
determine the properties of some phenomena. Monte-Carlo
simulations are ideally suited to GPU implementation and of-
fer significant speedup over single CPU implementation [15].

The Monte-Carlo simulation, which is very robust and rel-
atively simple to implement, has been used in this study in
order to evaluate the annual maximum force between sea ice
and a vertical-faced offshore structure. In other words, it
uses probabilistic methods to simulate sea ice-structure in-
teractions, rank the annual maximum loads, and plot them to
lognormal scales. This method constructs probability distri-
butions of ice environmental parameters. We have applied the
GPGPU approach with CUDA programming to implement
this interaction model between sea ice and a vertical structure
[6].

METHODOLOGY
This section describes the random nature of the environmen-
tal forces and how the sea ice load is calculated. There exist
different types of parameters based on the sea ice characteris-
tics and offshore structures. The present study demonstrates
the interaction model between level sea ice and a vertical off-
shore structure. Ice thickness, floe diameter, and ice strength
are defined as distributed parameters, and used to calculate
the ice pressure for level sea ice in order to find the sea ice
loads for each year. The width of the vertical structure is a
fixed parameter.

Sea Ice Characteristics
Sea ice is not a uniform sheet of ice, but is a complex surface
and it has many characteristics that can be considered in each
experiment [4]. In this experiment, the cumulative distribu-
tion function for ice thickness is defined as shown in Table
1.

In this study, floe diameter follows an exponential distribu-
tion. The mean and standard deviation for floe diameter are µ
=300 (m) and Std=100 (m) with considering 10 meters and in-
finity as lower and upper bounds respectively. Ice strength is
the third distributed parameter in this experiment. The proba-
bilistic distribution for the sea ice strength is estimated by the
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Ice Thickness
Bin (m) Cumulative (%)
1.5 -2 10.2
2 -3 25.0
3 -4 56.1
4 -5 76.1
5 -7 89.1
7 -8 93.7
8 - 9 97.3
9 -10 98.5
10 -11 99.7
11 -13 99.9
13 -14 100.0

Table 1. Cumulative distribution function for ice thickness.

approach suggested in ISO 19906 [11]. In this study, the ice
strength parameter “ CR” is defined by an uniform distribu-
tion with 1.8 and 2.8MPa as lower and upper bounds respec-
tively.

Interaction Model Approach
Ice interaction can create significant forces on offshore struc-
tures potentially causing damage the structure. Therefore, ice
load analysis is an important aspect for designing a marine
structure in icy waters, which is the application of this pa-
per. The interaction between level ice and a vertical struc-
ture looks straightforward but actually is not [10]. Gener-
ally, when the ice interacts with the structure, the ice will fail
and it may crush if the ice is thick enough [13]. More than
one approach is possible to estimate the characteristics of ice
loads, and there are arguments in favour of all of them. In
this experiment, one of the common approaches is used as
suggested in ISO 19906. Ice thickness, floe diameter and ice
strength are distributed parameters which follow specific dis-
tributions as shown in Table 2. The floe encounter rate is
defined as a gamma distribution with mean and standard de-
viation µ =50 and Std=30, considering 10 and 150 as lower
and upper bounds respectively. The final results are based on
ranking the annual maximum forces and determining the load
associated with a specified probability.

The global average pressure p, as used for this experiment, is
as follows:

p = CR(
h
h∗ )

n(Ws

h )m

Where

• p : The global average ice pressure (MPa).

• h : The ice thickness of the ice sheet (m).

• Ws : The contact width (m).

• m : An empirical coefficient of -0.16.

• n : An empirical coefficient of -0.5+0.2h if h < 1 (m) and
-0.3 if h ≥ 1 (m).

• CR : Ice strength coefficient (MPa).

• h∗ : A coefficient is equal to 1 (m).

At the start of each year, the number of impacts are speci-
fied, and for each impact the relevant parameters and result-
ing impact loads are determined. The crushing force at each
interaction between level ice and the vertical sided structure
is determined as:

F = p×Ac

Where

Ac =Ws × h

Monte-Carlo Simulation Framework
Many numerical problems in science, engineering, finance
and statistics are modeled through Monte-Carlo simulations.
The study of Monte-Carlo techniques require knowledge in a
wide range of fields, for instance probabilistics to describe the
random process, statistics to analyze the data, computational
science to efficiently implement the algorithms, and mathe-
matical programming to formulate and solve the problem of
interest [14].

Monte-Carlo simulation is a very robust and relatively simple
method to implement. However, using Monte-Carlo simula-
tion requires a long execution time, though it is decreasing as
computers become more powerful [20].

For each year and impact, we track and store annual maxi-
mum load with associated parameters as also shown in Figure
1.

This experiment is configured to facilitate the use of Monte-
Carlo simulation to determine the design load using the fol-
lowing steps as shown in Figure 2:

• Specify an interaction model corresponding to level sea ice.

• Define probability distributions for the environmental in-
puts.

• Determine the maximum annual force on the structure.

• Perform this experiment for a sufficient number of years to
achieve stable results.

• Rank the annual maximum forces.

Based on Figure 2, the calculations of the ice loads on the
structure are independent for each year. Therefore, one thread
can be assigned for each year to calculcate the ice load on the
structure.

Cuda
In November 2006, NVIDIA had an opportunity to bring
GPUs into the mainstream by bringing a programming in-
terface, which it dubbed CUDA. It was an attempt to make
programming environment on GPUs more accessible to pro-
grammers. CUDA interface uses standard C language to im-
plement an algorithm on GPU without having any knowl-
edge about graphics programming using OpenGL, DirectX,
and shading language. CUDA has produced great progress
in the computer software industry by moving from serial to
parallel programming [7]. It can take a simple model of data
parallelism into a programming model without the need for
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Parameter Symbol Unit Value or Distribution Type
Contact width Ws m 80
Ice thickness h m User-defined
Ice strength CR MPa Uniform distribution
Floe diameter m Exponential distribution
Floe encounter rate Gamma distribution

Table 2. Input parameters for Monte-Carlo simulation

graphics primitives. In other words, The CUDA environment
makes the GPU look like another programmable device.

CUDA contains some libraries, which are not different than
system libraries or user-built libraries. They can refer to a
set of functions’ definitions whose signatures are exposed
through header files. The CUDA libraries are special in that
all computation implemented in the library is accelerated us-
ing a GPU, as opposed to a CPU. There exist shared features
and concepts in many CUDA libraries which can be called
from a host application. This scenario demonstrated the ap-
plication of the two most important libraries in CUDA [16].

As far as we know, the critical part of many scientific, and
functional applications is random number generation. CUDA
provides a library, CURAND, which can focus on the efficient
generation of high quality pseudo-random and quasi-random
numbers. CURAND is equipped by library on the host (CPU)
side and a device (GPU) header file. These random numbers
can be generated on the device or on the host CPU.

For device generation of random numbers, the actual work
occurs on the device and the result would be stored in global
memory on the device. The user can copy random numbers
back to the host for further processing or call their own ker-
nels to use the random numbers. However, for host CPU gen-
eration, all of the works are done on the host, and the random
numbers would be stored in host memory [17].

The next library, Thrust, is a powerful library of parallel algo-
rithms and data structures. It has a leverage to implement high
performance application with minimal programming effort.
Thrust provides a flexible, high-level interface for GPU pro-
gramming that enhances developer productivity and the ro-
bustness of CUDA applications. Using Thrust, the program-
mer can write just a few lines of code to perform operations
faster than the latest multi-core CPUs [12].

CUDA libraries and intensive GPU-accelerated applications
are available from NVIDIA and the use of those libraries is
a key area where you can obtain some serious productivity
gains, as well as execution time and a significant improve-
ment in speedup.

PROCEDURE OF THE EXPERIMENT
The goal of this study is to find maximum annual force be-
tween sea ice and a vertical sided structure. To gain this re-
sult, we define fixed and distributed parameters in order to
calculate the forces in each year. A fixed parameter will be
the width of the vertical structure that has interaction with
sea ice, and distributed parameters are ice thickness, floe di-
ameter, and ice strength. Those distributed parameters ex-
cept ice thickness follow specific probabilistic distributions.

Figure 1. Probabilistic framework of load characteristic

Figure 2. Monte-Carlo simulation framework

Therefore, we need to use CURAND libraries on CUDA en-
vironment to generate random numbers based on those prob-
abilistic distributions and using Monte-Carlo simulation for
interaction with sea ice. As it is mentioned in methodology,
sea ice and an offshore structure can produce pressure with
regards to an interaction, and then it is possible to calculate
force in each year and rank the maximum force as an output.

The present scenario examined the interaction model in 5
cases which started from 10,000; 50,000; 100,000; 500,000;
and 1,000,000 years. The simulation has been done by
CUDA programming using GPUs and Multi-GPU to compare
the performance of the GPU and Multi-GPU against the se-
rial CPU, parallel CPU (OpenMP), MATLAB and MATLAB
(Parfor) implementations.

RESULTS
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Card type Approximate
speedup

Quadro K4100M 3,000
Tesla K80 12,000
GeForce GTX TITAN Black 14,000
4 Tesla K80 89,000

Table 3. Approximate speedup of different GPUs over MATLAB imple-
mentation using a signle CPU core

Ice Loads
The methodology used in the present study results in a load-
exceedance curve, which can be used to determine maximum
loads at a desired annual exceedance probability level. One
can think of the 100 year period load as having 10−2 annual
probability of exceedance over the design of the structure.
The goal of this study is to find the load on the structure asso-
ciated with an annual probability of 10−2 as shown in Figure
3.

Performance Results
The simulation of the sea ice interaction with a vertical struc-
ture is a good fit for the GPUs implementation. In order to
have high performance results, GPUs require mapping and
optimization based on their significantly different architec-
tures from CPUs. GPUs have high parallel throughput and
high memory bandwidth, which enable them to work with
multiple processor configurations [7].

This study developed a model of the sea ice load to determine
the characteristic loads using Monte-Carlo simulation. For
each interaction, it simulates and runs the appropriate model
to find the maximum ice load by generating random values
from the input distributions.

This implementation of interaction model using CUDA pro-
gramming on GPU and Multi-GPU has advantages over the
serial CPU, parallel CPU (OpenMP), MATLAB and MAT-
LAB (Parfor) implementations. Results tested on different
types of GPUs such as GeForce GTX TITAN Black, Quadro
K4100M, Tesla K80, and a Multi-GPU (4 Tesla K80). Those
GPU implementations are used to calculate performance re-
sults over different CPU implementations. This work uses
two Intel(R) Xeon(R) CPU E5-2620 @2.10GHz.

Figure 5, 6, 7 and 8 show an approximate speedup of up to
3,000; 12,000; 14,000 and 89,000 over MATLAB implemen-
tation using a single CPU core as shown in Table 3.

Figure 4 shows the elapsed time of CPU, parallel CPU
(OpenMP), MATLAB, MATLAB (Parfor), and using three
different GPU cards specified as GeForce GTX TITAN
Black, Quadro K4100M, Tesla K80, and a Multi-GPU (4
Tesla K80). As we see in Figure 4 the elapsed time is reduced
from about 3 hours to approximately 0.1 second. Therefore,
the Multi-GPU (4 Tesla K80) is the fastest implementation in
this scenario.

RELATED WORK
Nowadays, improvements in the programmability and com-
puting power of GPUs made an acceleration, for time con-
suming simulation. There are many works that had been done

to accelerate the speedup of GPUs over CPUs implementa-
tions. Recently, a paper has been published to show the per-
formance benefits of GPGPU for sea ice forecasting by using
fast quadratic discriminant analysis [7].

The present study demonstrated a significant speedup of a
standard code for Monte-Carlo simulation of sea ice load
on a GPU by using CUDA programming over CPU imple-
mentations. Also, there is another article related to GPU-
accelerated Monte-Carlo simulation of Brownian motors dy-
namics with CUDA that brought speedup of about 3,000 com-
pared to typical CPU. The significant speedup that came after
using different types of GPUs expands the range of problems
solvable by using probabilistic simulations [18].

The Monte-Carlo simulations as a broad class of computa-
tional algorithms are used in many different areas [8].

The question is why we apply Monte-Carlo simulation for
those different areas? It is apparent that we use Monte-
Carlo simulation when we have some applications with un-
certainty in inputs and for high dimensional problems with
many degree of freedom. Therefore, it needs to discover the
stages that we are supposed to use to improve performance in
Monte-Carlo simulation [3].

A typical Monte-Carlo system consists of four stages such
as random number generation, path generation, payoff func-
tion, and statistical aggregation. It is indisputable to use par-
allel constructs in order to design Monte-Carlo simulation in
CUDA environment [2].

In order of using CURAND library in the present study, we
used Thrust library which is the powerful abstraction tool and
an efficient way of performing Monte-Carlo on GPUs. One
of the popular example of using Thrust library on CUDA is
the estimation of the value of the constant PI by using Monte-
Carlo simulation on GPUs [1].

The direct simulation Monte-Carlo (DSMC) is a proven tech-
nique that take advantage of the computational performance
of GPUs to simulate rarefied flows where real gas effects
by internal relaxation and chemical reactions. This method
achieved high performance which make that applicable by
partially alleviating the main limitation of long computational
run-times [9]

Another application of Monte-Carlo simulation by using
CUDA programming on GPU is the evaluation of light-skin
diffuse reflectance spectra for Multi-Layered Media. The
speedup for this case is 71.19 and it varies across the wave-
lengths [21]

Ice engineers who work with different types of environmental
inputs, estimate probabilistic distributions of sea ice parame-
ters in order to simulate the interaction models with offshore
structures. Also, they applied Monte-Carlo simulations on
design of many models, based on the impact forces between
sea ice and offshore structures. They did not have any imple-
mentations for sea ice load by using Monte-Carlo simulation
on GPUs [19].
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Sometimes, programmers who use GPUs to implement their
algorithms, achieve speedups of order of magnitude versus
efficient CPU implementations. GPUs developed as a ded-
icated chips to aid high performance computing in parallel.
The reason for this advantage, is the bandwidth and computa-
tional horsepower of recent GPUs architectures. This devel-
opment in GPUs computation have permitted the simulating
of massive event set in timely and practical way. For instance,
research has been done to demonstrate performance benefit of
GPGPUs for simulating the complex mechanics of a ship op-
erating in pack ice and it proved that GPUs have the potential
to reduce the computational time significantly [6].

There is another study that has been done on the utility
of graphics cards to perform massively parallel simulations
of advanced Monte-Carlo simulation. This implementation
worked with a set of stochastic simulation examples includ-
ing population-based Markov chain Monte-Carlo simulations
on GPU and it brought speedup from 35 to 500 over CPUs
implementations [15].

The result indicated that GPUs and Multi-GPUs have high po-
tential to facilitate the algorithm to access many-core compu-
tations, and motivate broad use of parallel simulation methods
in order to reduce the computational time and offer significant
speedup over CPU implementations.

CONCLUSION
In this study, GPU performance benefits are discussed for a
Monte-Carlo simulation of sea ice loads. Specific ice param-
eters were selected for demonstrative purposes, which allow
the engineering designers to have a better understanding of
those factors. The speedups attainable with different types
of GPUs for sea ice load by using Monte-Carlo simulation is
tremendous, and the elapsed time is reduced signifantly. It
should be mentioned that while we have used CUDA to im-
plement the parallel algorithm, the results are not specific to
this method or to GPUs. There exist many-core processor
markets with different devices and architectures, which take
advantage of this improvement [15].

FUTURE WORKS
The present study only focused on one scenario which was
the interaction between level ice and a vertical structure, but
there exist many other scenarios that worth to work in order to
achieve development and optimization. For those who might
be interested to find an experiment to work on, it is helpful
to be familiar with different types of sea ice and explore an
efficient way such as Monte-Carlo simulation to implement
different interaction models.

In this experiment, memory limited us to work on more data.
Then, finding a way to manage the memory would be helpful.
Sometimes, the operating system on the co-processor allows
us to allocate more memory space than is physical available.
Typically, it is time consuming to start your code from be-
ginning to optimize your implementation. Therefore, one of
the solutions might be to use another processor that enables
significant performance gains for highly parallel code, for in-
stance the Intel Xeon Phi coprocessor might be suitable. Now,

you can think “reuse” rather than “recode”. This type of co-
processor optimized to be the right choice for highly parallel
workloads [5].

Based on what researches have been done in the area of GPU
computing and what we discussed in the related works sec-
tion, there are many ways to improve high performance com-
puting. For instance, using different types of GPUs brought
significant speedup in some stochastic differential equations.
Hopefully, with the help of this work, future studies which are
related to Monte-Carlo simulation on GPUs would become
much easier to work with and it will open a completely new
chapter in the history of high performance computing [18].
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Figure 3. Ice load results from Monte-Carlo simulation

Figure 4. Elapsed time of the different Monte-Carlo implementations
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Figure 5. Speedup of the GPU (GeForce GTX TITAN Black) implementation

Figure 6. Speedup of the GPU (TeslaK80) implementation
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Figure 7. Speedup of the GPU (Quadro K4100M) implementation

Figure 8. Speedup of the 4 GPUs (Tesla K80) implementation
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