Fast and Scalable Architectures and Algorithms for the Computation of the Forward and Inverse Discrete Periodic Radon Transform with Applications to 2D Convolutions and Cross-Correlations.

Cesar Carranza
December 17th, 2015
Outline

• Motivation
• Thesis statement
• Prior work
• Contributions
• Methods
• Results
• Future work
• Concluding remarks
• Publications
Motivation

2-D Convolution using the FFT

Expensive butterfly implementation limit parallelism (1 to 8)
Floating point units cost 20x fixed-point units [Vera, 2011]
Can we speedup this approach on modern devices so that it outperforms everything else?

Basic concept: Develop optimized I/O, parallel and pipelined fixed point architectures.
I believe that it is possible to develop fast and scalable architectures and algorithms for the computation of the Discrete Periodic Radon Transform (DPRT) and its inverse (iDPRT), that will enable the application of the DPRT in different areas where its use was limited due the lack of a fast implementation (e.g., in 2D convolutions and cross-correlations).

Furthermore, I believe that it is possible to develop highly efficient, parallel DPRT and iDPRT algorithms on existing GPUs and multi-core CPUs.
Mathematical background and algorithms:

- [Grigoryan, 1984] 2-D DFT using the DPRT for prime numbers and power of two sized images.
- [Matus, 1993] DPRT and its inverse for prime sized images. Sequential algorithm $O(N^3)$
- [Pattichis, 2000] DPRT (power of two sizes) in $O(N^2 \log_2 N)$
- [Kingston, 2006] Generalized the DPRT to square arrays of arbitrary size.

DPRT for prime sizes: Minimum set of prime directions, no redundancy, closed form for the inverse.
Prior Work

Architecture implementations (Image size N x N)

- [Wisinger 2003]
 - Running time (RT): $O(N^4)$, Resource usage (RU): $O(N^2)$.
- [Rahman 2004]
 - RT: $O(N^3)$, RU: $O(N^2)$. Also, RT: $O(N^2)$, RU: $O(N^2)$. Fixed size 7x7.
- [Uzun 05]
 - RT: $O(N^3)$, RU: $O(N^2)$.
- [Chandrasekaran 05]
 - Serial, parameterized and power efficient architecture, RT: $N(N^2 + 2N + 1)$, RU: $O(N)$.
 - Parallel non parametrizable architecture, RT: $O(N^2)$, RU: $O(N^2)$.
- [Chandrasekaran 08]
 - Systolic, parameterized architecture, RT: $(N^2 + N + 1)$, RU: $O(N^2)$.

All of these methods are based on a non scalable, sequential algorithm that cannot be effectively parallelized.
Prior work

2-D convolutions and Cross-correlations (non-separable kernels):

- [Keung1990] Serial systolic array that removes the I/O issues. Running time: $O(N^2)$, resources $O(N^3)$
- [Mohanty1996] Parallel and Scalable systolic array. Running time $O(N) – O(N^2)$, resources $O(N^3) – O(N^2)$
- [Fowers2015] Sliding window in the spatial domain. Running time $O(N^2)$, resources $O(N^2)$.
- [Rao2010] Fast Fourier Transform (FFT). $O(N^2 \log_2 N)$
- [Uzun2005,Xilinx2012] FPGA implementations of FFT. Serial and Parallel $O((N^2 \log_2 N)/p)$. p is the number of parallel 1-D FFTs. Resource usage $O(N) – O(N^2)$.

I propose new frameworks that can provide faster running time with lower resource usage
Contributions

Scalable frameworks for computing:

- Forward DPRT
- Inverse DPRT
- 2-D Convolutions and Cross-correlations.

Scalability based on:

- Pareto optimality that provides the fastest possible implementation based on the available HW.
- Vastly reduction on resources that can fit now in devices.
Contributions

Fast frameworks:

- An array of shift registers and adder trees to compute up to N^2 additions per clock cycle.
 - No address calculations
 - No I/O delays

- A custom SRAM able to provide up to N values per clock cycle.
 - Full row of an image.
 - Full column of an image (fast transposition).
Contributions

- Fast 1-D convolvers
 - Parallel and pipelined convolvers that compute one output pixel per clock cycle.

- Custom SRAMs to perform the fast transposition needed in the LU framework.
Contributions

For the computation of the DPRT and its inverse on CPUs/GPUs:

- Distributed processing of prime directions to CPU-cores and GPU-Multiprocessors.
- **Parallel** and **synchronous computation** of rays of the prime directions by cores inside the GPU-Multiprocessors.
Methods: Background - DPRT

\[f(i,j) \]
\[R(m,d) \]
\[R_k(d) \]

\[R(m,d) = \begin{cases}
\sum_{i=0}^{N-1} f(i, (d + mi)_N), & 0 \leq m < N \\
\sum_{j=0}^{N-1} f(d, j), & m = N
\end{cases} \]

\[f(i,j) = \frac{1}{N} \left[\sum_{m=0}^{N-1} R(m, (j - mi)_N) - S + R(N,i) \right] \]

\[S = \sum_{j=0}^{N-1} \sum_{i=0}^{N-1} f(i,j) = \sum_{d=0}^{N-1} R(m,d) \]

Illustration of the DPRT and its iDPRT for an image \(f \) of size \(N \times N \). The row vector \(k \) of \(R(m,d) \) is denoted as \(R_k(d) \) which represents the \(k \) projection of \(f(i,j) \).
Background: Prime directions

Prime dir. (1,0)

Prime dir. (1,1)

Prime dir. (1,2)

Prime dir. (1,3)

Prime dir. (0,1)

...
Background: Prime directions

Prime dir.(1,0)

Prime dir.(1,1)

Prime dir.(1,2)

Prime dir.(1,3)

Prime dir.(0,1)
Background: DPRT

Forward DPRT (Input: NxN):
- N+1 Prime directions
- N rays per prime direction
- N pixels to be added per ray

Number of additions: \((N+1)N(N-1)\)

Inverse DPRT (Input (N+1)xN):
- N Prime directions
- N rays per prime direction
- N pixels to be added per ray + 2 extra additions and one division

Number of additions \(N^2(N+1)\)
Number of divisions: \(N^2\)
Background: CPUs/GPUs

CORE
- Dispatch Port
- Floating Point Unit
- Integer Unit
- Result Queue

HOST (CPU)
- System Memory
- Core 1
- Core 2
- Core M_C

DEVICE (GPU)
- Instruction Unit
- Registers
- Fast SRAM
- Cache
- Device Memory

- Multiprocessor 1
 - Core 1
 - Core 2
 - Core N_P

- Multiprocessor 2

Latency of T_M, T_C, T_S

MIMD

SIMD
Methods: Parallel DPRT on CPUs

Parallel algorithms for computing the forward DPRT of an N×N image

1: Partition the set of $N+1$ prime directions into M_C sets of consecutive prime directions
2: Launch M_C threads, assigning each partitioned set to each thread
3: Wait for threads to finish

Main parallel algorithm for computing the forward Discrete Periodic Radon Transform $R(m, d)$ of the image $f(i, j)$ of size $N \times N$ on a CPU with M_C cores.

$O(N^3)$ additions
$O(N^3/M_C)$ additions per core
Theoretical speedup: M_C
Methods: Parallel DPRT on GPUs

Parallel algorithms for computing the forward DPRT of an NxN image

STEP1: Partition prime directions into \(M_P \) sets
STEP2: Launch the sets on the Multiprocessors.
 Each prime direction requires the computation of \(N \) rays.
STEP3: Wait for threads to finish

1: procedure \(fDPRT_DEVICE_Kernel(m, d) \)
2: \[\text{sum} = 0 \]
3: if \(m = N \) then
4: for \(j = 0 \) to \(N - 1 \) do
5: \[\text{sum} = \text{sum} + f(d, j) \]
6: end for
7: else
8: for \(i = 0 \) to \(N - 1 \) do
9: \[\text{sum} = \text{sum} + f(i, \langle d + m \times i \rangle_N) \]
10: end for
11: end if
12: \(R(m, d) = \text{sum} \)
13: end procedure

Single core computes one ray \(d \) of prime direction \(m \)

\(M_P = \) Number of multiprocessors
\(N_P = \) Number of Cores inside an MP

\(O(N^3) \) additions
\(O(N^3/M_P) \) additions per MP
\(O(N^3/(M_P \times N_P)) \) per core

Ideal speedup = \(M_P \times N_P \times (f_{\text{GPU}}/f_{\text{CPU}}) \)
Assumes no I/O issues, latencies.
Issues:

- Current GPUs have a relatively small Fast SRAM to load the whole image.
- Accesses to Cache or Global memory are costly.

Solution:

- Synchronize threads at the ray computation level exploiting locality of the data per row of the image.
Methods: Parallel DPRT on GPUs

Memory pattern access by a set of threads computing the same prime direction but different rays

(a) (b) (c)
Methods: Parallel DPRT on GPUs

Memory pattern access by a set of threads computing the same prime direction but different rays.
Methods: Parallel DPRT on GPUs

Kernel algorithm for computing the forward DPRT of an N×N image

```plaintext
1: procedure fDPRT_GPU_Kernel(radon, img, N, m, d)
2:      if m = N then
3:         offs = 0
4:         incr = 1
5:         init = d × N;
6:      else
7:         offs = d
8:         incr = N
9:         init = 0;
10:     end if
11:     Synchronize threads
12:     k = d + m × N
13:     sum = 0
14:     for i = 0 to N − 1 do
15:         sum = sum + img[init + offs]
16:         offs = (offs + m) mod N
17:         init = init + incr
18:     end for
19:     radon[k] = sum
20: end procedure
```

- Synchronous computation
- Simplified address calculation
- Row-major memory access
- Concurrent reads and writes
- No writes conflicts

Note: Partial DPRTs are not possible.

Kernel algorithm for each core on the GPU to compute one ray of the forward Discrete Periodic Radon Transform \(R(m, d) \) of the image \(f(i, j) \) of size \(N \times N \). \(R(m, d) \) is mapped to a vector \(\text{radon}[k] \) and \(f(i, j) \) is mapped to a vector \(\text{img}[k] \), both using row-major order.
Methods: Fast DPRT

\[
\sum_{i} \begin{pmatrix}
 f_{0,0} & f_{0,1} & f_{0,2} & f_{0,3} & f_{0,4} & f_{0,5} & f_{0,6} \\
 f_{1,0} & f_{1,1} & f_{1,2} & f_{1,3} & f_{1,4} & f_{1,5} & f_{1,6} \\
 f_{2,0} & f_{2,1} & f_{2,2} & f_{2,3} & f_{2,4} & f_{2,5} & f_{2,6} \\
 f_{3,0} & f_{3,1} & f_{3,2} & f_{3,3} & f_{3,4} & f_{3,5} & f_{3,6} \\
 f_{4,0} & f_{4,1} & f_{4,2} & f_{4,3} & f_{4,4} & f_{4,5} & f_{4,6} \\
 f_{5,0} & f_{5,1} & f_{5,2} & f_{5,3} & f_{5,4} & f_{5,5} & f_{5,6} \\
 f_{6,0} & f_{6,1} & f_{6,2} & f_{6,3} & f_{6,4} & f_{6,5} & f_{6,6}
\end{pmatrix}
\]

\[
R_0(0) R_0(1) R_0(2) R_0(3) R_0(4) R_0(5) R_0(6)
\]

\[
f(0,q) \rightarrow + \\
f(1,q-p) \rightarrow + \\
f(2,q-2p) \rightarrow + \\
f(3,q-3p) \rightarrow + \\
f(4,q-4p) \rightarrow + \\
f(5,q-5p) \rightarrow + \\
f(6,q-6p) \rightarrow +
\]

\[
R(p,q)
\]
Background: Scalable DPRT

Sequential processing of K strips
Partial DPRT computation of f

Sequential output of K planes of \((N+1) \times N\)

R(m,d) decomposed in K planes
Scalable FDPRT

\[f(i,j) \rightarrow \text{MEM}_\text{IN} \rightarrow \text{SFDPRT}_\text{core} \rightarrow \text{MEM}_\text{OUT} \rightarrow R(m,d) \]

- Strip
- Partial DPRT
- Accumulated DPRT
MEM_IN design

Custom SRAM for single cycle access to rows and columns

![Diagram of MEM_IN design with SRAM and address generator](image)
Row/Column access example

7x7 Image shifting patterns for fast access of rows and columns (transpose of the image)

<table>
<thead>
<tr>
<th>(f(i,j))</th>
<th>Shifted (f)</th>
<th>(A_{\text{RAM}[0]} = 4), row_mode</th>
<th>(A_{\text{RAM}[0]} = 4), column_mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{0,0})</td>
<td>(f_{0,0})</td>
<td>(f_{0,0})</td>
<td>(f_{0,0})</td>
</tr>
<tr>
<td>(f_{1,0})</td>
<td>(f_{1,0})</td>
<td>(f_{1,0})</td>
<td>(f_{1,0})</td>
</tr>
<tr>
<td>(f_{2,0})</td>
<td>(f_{2,0})</td>
<td>(f_{2,0})</td>
<td>(f_{2,0})</td>
</tr>
<tr>
<td>(f_{3,0})</td>
<td>(f_{3,0})</td>
<td>(f_{3,0})</td>
<td>(f_{3,0})</td>
</tr>
<tr>
<td>(f_{4,0})</td>
<td>(f_{4,0})</td>
<td>(f_{4,0})</td>
<td>(f_{4,0})</td>
</tr>
<tr>
<td>(f_{5,0})</td>
<td>(f_{5,0})</td>
<td>(f_{5,0})</td>
<td>(f_{5,0})</td>
</tr>
<tr>
<td>(f_{6,0})</td>
<td>(f_{6,0})</td>
<td>(f_{6,0})</td>
<td>(f_{6,0})</td>
</tr>
</tbody>
</table>
Fast and scalable architecture system for computing 2D convolutions/Cross-correlations using the DPRT.

\[\text{SFDPR} \rightarrow \text{MEM}_\text{KER} \rightarrow \text{F1DCC} \rightarrow \text{iSFDPR} \]

- **SFDPR**: Scalable Fast DPRT, i for inverse
- **F1DCC**: Fast 1-D Circular convolver
Methods: 1-D Circular convolver (F1DCC)

\[F_m(d) = \sum_{k=0}^{N-1} G_m(k) \bar{H}_{m+1}^d(k). \]
Methods: 2-D Convolution/X-corr LU

Fast and scalable architecture system for computing 2D convolutions/Cross-correlations using LU decomposition.

F1DLC: Fast 1-D Linear convolver
Methods: 1-D Linear convolver F1DLC

(a)

(b)
Temporal/Transpose SRAM

Diagram Description:

- **Inputs:**
 - \(N \times B' \) to \(m \times J \)
 - \(m \times J \) to \(L \)
 - \(L \) to \(J \)
 - \(C_{in} \)

- **Outputs:**
 - \(D_{in} \) to \(B' - 1 \)
 - \(B' \)
 - \(DO \)

- **Data Flows:**
 - \(D_{in} [0:B'-1] \)
 - \(D_{out} [0:B'-1] \)
 - \(D_{in} [B':2B'-1] \)
 - \(D_{out} [B':2B'-1] \)
 - \(D_{in} [(N-1) \times B':N \times B'-1] \)
 - \(D_{out} [(N-1) \times B':N \times B'-1] \)

- **Control Signals:**
 - \(MODE \)
 - \(W_{in} \)
 - \(E_{in} \)
 - \(A_{in} \)
 - \(A_{RAM} \)
 - \(C_{in} \)
 - \(C_{s} \)

- **Logic:**
 - \(m = \lceil \log_2 M \rceil \)
 - \(A_{RAM} [0] \)
 - \(A_{RAM} [1] \)
 - \(A_{RAM} [N-1] \)

- **Mode Values:**
 - \(MODE = 0: \) Individual access
 - \(MODE = 1: \) Row access
Results – CPU/GPUs

Speedup for the forward DPRT for different implementations with respect to the serial implementation

Image size (NxN, in pixels)

Speedup fSER/fx, x:CPU,SFDPRT, GPU

- fCPU: Xeon E5-2630, 8 Cores, 16 Logical cores, \(f_{CLK} = 3.2\text{GHz}\)
- fGPU: GeForce GTX980, 2048 cores, \(f_{CLK} = 1.37\text{GHz}\)
- fSFDPRT: Xilinx – Virtex6, H=2, custom, \(f_{CLK} = 0.1\text{GHz}\)
Table 1: Total number of clock cycles for computing the DPRT. In all cases, the image is of size $N \times N$, and $H = 2, \ldots, N$ is the scaling factor for the SFDPRT.

<table>
<thead>
<tr>
<th>Previous work</th>
<th>Clock cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial [Matus93],[Chandrasekaran05]</td>
<td>$N^3 + 2N^2 + N$</td>
</tr>
<tr>
<td>Systolic [Matus93],[Chandrasekaran08]</td>
<td>$N^2 + N + 1$</td>
</tr>
<tr>
<td>This work</td>
<td></td>
</tr>
<tr>
<td>SFDPRT</td>
<td>$\lceil N/H \rceil (N + 3H + 3) + N + \lceil \log_2 H \rceil + 1$</td>
</tr>
<tr>
<td>SFDPRT ($H = 2$) lowest resource usage</td>
<td>$\lceil N/2 \rceil (N + 9) + N + 2$</td>
</tr>
<tr>
<td>SFDPRT ($H = N$) fastest running time</td>
<td>$5N + \lceil \log_2 N \rceil + 4$</td>
</tr>
<tr>
<td>FDPRT</td>
<td>$2N + \lceil \log_2 N \rceil + 1$</td>
</tr>
</tbody>
</table>
Results – Running time forward DPRT

- Serial
- Systolic
- SFDPRT(H=2)
- SFDPRT(H=16)
- FDPRT

Clock cycles vs. Image size (N×N), N prime
Results – Running time inverse DPRT

Clock cycles vs. Image size (N x N), N prime

- Serial
- Systolic
- SFDPRT (H=2)
- SFDPRT (H=16)
- FDPRT
- iSFDPRT (H=2)
- iSFDPRT (H=16)
- iFDPRT
Comparative plot for the different implementations based on the number of cycles and the number of flip-flops only. The plot shows the Pareto front (in red) for the proposed SFDPRT for $H = 2, ..., 251$, for an image of size 251×251. The graphical representation includes various implementations such as Serial, Systolic, SFDPRT, SFDPRT: $H=2, ..., 251$, and FDPRT.
Comparative plot for the different implementations based on the number of cycles and the number of 1-bit additions only. The plot shows the Pareto front (in red) for the proposed SFDPRT for $H = 2, \ldots, 251$, for an image of size 251x251.
Results 2-D Convolution/X-corr

Running time in clock cycles (normalized by image size N) versus convolved image size for all methods.

- ScaSys, PA=2
- ScaSys, PB=4
- SerSys
- S2DLCLU, J=1, Rank=2
- S2DLCLU, J=N, Rank=2
- SF2DLC J=H=2
- SF2DLC J=N+1, FDPRT
- FFTr2, D=1
- FFTr2, D=4

Convolved image size N x N

Running time (in (clock cycles)/N)
Results 2-D Convolution/X-corr

Pareto front for running time vs different resource usage. Image and kernel size are 64x64, then N=127.
Future work

- Beyond prime N, need N = 2^m. Additions reduced to N^2 log_2 N while prime directions increase to 3N/2 and the inverse needs to be computed iteratively.

- Study multi-objective space defined by the accuracy, performance, and required resources of the DPRT and its applications in 2-D convolutions and cross-correlations.
Concluding remarks

Overall, my dissertation has led to the development of fast and scalable methods for the computation of the DPRT and its inverse.

The fast methods have enabled the application of the DPRT to new areas that were not possible with previous implementations.
Patent and Publications

Patent:

Relevant publications:

D. Llamocca, C. Carranza, M. Pattichis, "Separable FIR Filtering in FPGA and GPU Implementations: Energy, Performance, and Accuracy Considerations“, 2011 International Conference on Field Programmable Logic and Applications (FPL), Sept. 2011, pp.363,368,
Future publications

- **Journal submission of Fast 2-D Convolutions and Cross-Correlations Using Scalable Architectures:**
 - FPGA implementations is under development, it will be added to the work presented in this manuscript and submitted to IEEE Transactions on Image Processing.

- **Journal submission of DPRT on Multi-core CPU and GPUs**
 - The new parallel algorithms proposed here to compute the DPRT and its inverse using GPUs will be applied to image filtering with large and non-separable kernels and submitted to: TBD.

- **Journal submission of DRASTIC applied to the forward and inverse DPRT.**
 - Accuracy will be added in the multi-objective optimization to generate scalable, fast and accurate architectures for the computation of the DPRT.

- **Two provisional patents submitted:**
 - Parallel algorithms on the GPU
 - Scalable and Fast architectures and algorithms for 2D Convolutions/Cross-correlations.