5@ Hxh-‘i q-rH mm

DIGITAL LOGIC DESIGN |
VHDL Coding for FPGAs
Unit 9

vMISCELANEOUS TOPICS

= J/O text files for simulation and synthesis. Example: serial
multiplier, basic NI-to-NO LUT, VGA.

= Using Xilinx primitives: BRAMs, XADC, FIFOs, MMCMs, DSPs.

OAKLAND
. UNIVERSITY.
Daniel Llamocca »

v'1/0 textfiles: Simulation S

= Reading/Writing text files for Simulation:
« UNSIGNED ITERATIVE MULTIPLIER: Digital Library—Arithmetic Cores: (code).
 Testbench: tb mult iter.vhd. Input text file: in benchN12M8. txt
« Stimulus process: reads file line by line and place data on the inputs.

DA DB

library g

use all;
use all;

use all;

entity tb mult iter is
generic (N: INTEGER:= 12;
M: INTEGER:= 8) ;
end tb mult iter;

stim: process

file IN FILE: TEXT open READ MODE is "in benchN12M8.txt";

variable BUFI: line;
variable VAR:
begin

wait for 100 ns; resetn <= '1l';

1 tb: loop

(N+M-1 downto O0);

exit 1 tb when endfile (IN_FILE) ;
readline (IN_FILE, BUFI);

read (BUFI, var);

dA <= var (N+M-1 downto M)

s <= 'l'; wait for T;
end loop;
wait;
end process;

Daniel Llamocca

s <=

; dB <= var (M-1 downto 0);

|0|

; wait for T* (M+2) ;

S

>

. done
Sequential |—>»

Multiplier

k!

P

OAKLAND
UNIVERSITY.

http://www.secs.oakland.edu/~llamocca/dig_library/arith/my_mult.zip

v'1/0 textfiles: Simulation

= Reading/Writing text files for Simulation:
 Multiplier: Data input: A: 12 bits, B: 8 bits. Data output: P: 20 bits.

« Qutput capture process:. It captures output data and writes on file line
by line. Most circuits include a ‘done’ signal: at the rising clock edge,
data is retrieved.

* Vivado:

— Include the input text file as a Simulation Source in the Project.
— The output text file will be written in sim/sim 1/behav.

tb o: process
file OUT_FILE: TEXT open WRITE MODE is "out benchN12M8.txt";
variable BUFO: line;

variable OVAR: (N+M -1 downto 0);
begin
lp: loop
wait until done = 'l' and (clock'event and clock='1l");
OVAR:= P;

write (BUFO, OVAR) ;
writeline (OUT FILE, BUFO) ;
wait for T;

end loop;

end process;
END ; OAKLAND
UNIVERSITY.

Daniel Llamocca

v'1/0 textfiles: Synthesis

= Reading text files for Synthesis: LUT WiTH I/O REGISTERS

* LUTsys.zip:
test.vhd, LUT group.vhd, LUT NItoNO.vhd, dffe.vhd, atb test.vhd,
LUT_value S{NI}to{NO}.LXt (thistextfile has to be in the same folder as LUT NItoNO.vhd).

* LUT group: NC NI-to-NO LUTs. We can load each LUT NI-to-NO with:
a different function (1 to NC), or the same function (specified by F).

* LUT NItoNO: NI-to-NO LUT. It selects an NO-bit output word based on
the NI-bit input. The LUT contents are read from an input text file.

= Vivado: Include the input text file(s) for testbenches as Simulation
Sources. Output text file(s) will be written in /sim/sim 1/behav.

S S} NI NO O O
H H NI-to-NO O O ™ b, b,
= = = Z NO-1 ==* 1 0
DI T -qﬁ)ﬂq‘) DO ,
E —So—>ln 2 NT NO
S N[o oL > § —> e
NI-to-NO s
8
- <}
=
NI-to-NO LUT NI-t0-NO
1 > v OAKILAND
L] L] UNIVERSITY.

Daniel Llamocca

v'1/0 textfiles: Synthesis

= Reading text files for Synthesis:
« Text File: LUT values{NI}to{NO}.txt. R

This file holds 2V NO-bit words for each function, :
separated by a line. Do not leave this line blank (we use

an 'L’ character), otherwise readline will skip it and read =~ "
the next line). This is the approach followed in this
example for F=1,2,3,4,5. S
 For a given function (F: 1,2,...), we start at line: :
(F-1)x M +1)+1.
= Alternative: You can create a file LUT_values{NI}to{NI}.txt f@ P
with no line separators (it will be difficult to tell where
function values are). In this case, the formula to know gt F=2
where to start reading (depending on F) will have to be
modified to: h(x) F=3
(F—1) x (2N + 1. :
OAKLAND
UNIVERSITY.

Daniel Llamocca

v'I/O textfiles: Synthesis % RECRLab

= Reading text files for Synthesis: LUT values{NI}to{NO}.txt
« VHDL code:

architecture structure of LUT NItoNO is
Depending on the function, we start at

constant START POINTER: INTEGER:= (F-1)* (2**NI + 1) + 1, =) a different place in the textfile

type chunk is array (2**NI -1 downto 0) of (NO-1 downto 0);
impure function ReadfromFile (FileName: in string; P: in integer) return chunk is
FILE IN FILE : text open read mode is FileName)
variable BUFF : line;
variable wval : chunk;
begin

if P /=1 then
for j in 1 to P-1 loop To start at the proper

place in the text file, we Text File is read with this function.

readline (IN_FILE, BUFF); | read P-1lines without imr;])u;e qualifier requirhed when
c - : the function output changes
_end loop; iDL SRS even when passing the
end if; same parameters, e..g: when
for i in 0 to 2**NI - 1 loop text file contents change

readline (IN_FILE, BUFF);
read (BUFF, wval(i));
end loop;
return val;
end function;

constant LUT val: chunk:= ReadFromFile(file LUT, START POINTER)

begin
LUT out <= LUT val (conv_integer (LUT_in)) s The NItoNO LUT behaves like a mux

end structure; with constant inputs OAKLAND

) UNIVERSITY.
Daniel Llamocca

