
Daniel Llamocca

DIGITAL LOGIC DESIGN
VHDL Coding for FPGAs

Unit 1
✓ DESIGN FLOW

✓ DATA TYPES

✓ LOGIC GATES IN VHDL

✓ TESTBENCH GENERATION

✓ XILINX: I/O ASSIGNMENT

✓ USE OF std_logic_vector

Daniel Llamocca

✓ DESIGN FLOW
▪ Design Entry: The circuit is specified using a Hardware

Description Language (e.g., VHDL, Verilog).

▪ Functional Simulation: Also called behavioral
simulation. Here, we will only verify the logical operation
of the circuit. Stimuli is provided to the logic circuit, so we
can verify the outputs behave as we expect.

▪ Physical Mapping: The inputs/outputs of our digital
circuit are mapped to specific pins of the FPGA.

▪ Timing Simulation: It simulates the circuit considering
its timing behavior (delays between inputs and outputs)

▪ Implementation: A configuration file (‘bitstream’ file) is
generated and then downloaded onto the FPGA
configuration memory.

Daniel Llamocca

✓DESIGN FLOW (Vivado Software)
▪ Synthesis: In this step, the VHDL code is examined for

syntax errors and warnings. While your code should be free
of syntax errors, watch out for warnings and critical
warnings. After this, we do behavioral simulation.

▪ Simulate Behavioral Model: We need to write a VHDL
file called ‘testbench’ where we specify the stimuli to the
logic circuit.

▪ Implement Design (Translate + Map + Place & Route)

▪ Generate Programming File: Here, a configuration file or
bitstream (.bit) is generated. This file will configure the
FPGA so that the logic circuit is implemented on it.

▪ Configure Target Device (Programming): The bitstream
file is written onto the FPGA configuration memory so that a
digital circuit is materialized. At this stage, we can verify
whether the hardware is actually working.

Daniel Llamocca

✓ LOGIC DATA TYPES
▪ Type: This is how data (digital signals or even abstract constructs like

variables) is specified in VHDL. Though different standards are available, a
common one is the IEEE std_logic_1164, that allows for these basic types:

▪ std_logic, std_logic_vector, std_logic_2d

▪ The std_logic type defines nine (9) possible states for a 1-bit signal:

▪ ‘U’ : Uninitialized

▪ ‘X’ : Forced Unknown

▪ ‘0’ : Zero

▪ ‘1’ : One

▪ ‘Z’ : High impedance

▪ ‘W’ : Weak unknown

▪ ‘L’ : Weak Zero

▪ ‘H’ : Weak One

▪ ‘-’ : Don’t care

▪ Other data types:

▪ array (group of signals, or group of groups)

▪ integer, user-defined

Daniel Llamocca

✓ LOGIC DATA TYPES:
▪ A digital circuit includes internal signals and external signals (also

called I/Os). In VHDL, I/O specification is called ‘mode’.

▪ Mode: Physical characteristics of inputs/outputs of a logic

circuit. The following modes are available in VHDL:

✓ IN : Input port of a circuit

✓ OUT : Output port of a circuit.

VHDL syntax: in VHDL, it is not possible to feedback an
output port to the input of the circuit.

✓ INOUT : Bidirectional port (it can be an input or output at

different times). It is very useful when implementing
bidirectional buses.

✓ BUFFER : Output port. In VHDL, if we define an output signal
as BUFFER, the signal can be fed back as an input of the

circuit. However, vendor support is inconsistent.

Daniel Llamocca

✓ LOGIC GATES IN VHDL
▪ VHDL allows for the specification of Boolean functions

based on the following gates: AND, OR, NOT, XOR,
NAND, and NOR.

▪ EXAMPLE: Write the VHDL code to implement the
following circuit whose output is ‘F’:

x

F

C

B

A y

• Note: In VHDL, A B C are inputs (IN), F is an output
(OUT), and x and y are internal signals (signal).

Daniel Llamocca

✓ LOGIC GATES IN VHDL

▪ EXAMPLE: VHDL code: example.vhd

library ieee;

use ieee.std_logic_1164.all;

entity example is

port (A, B, C: in std_logic;

F: out std_logic);

end example;

architecture struct of example is

signal x,y: std_logic;

begin

x <= C nor B;

y <= A and not(B);

F <= not(x xor y);

end struct;

logic

circuit

I/Os are specified here

Internal Description
of the logic circuit
is specified here

C

B

A

F

Daniel Llamocca

✓ TESTBENCH GENERATION

▪ EXAMPLE:

tb_example.vhd

Unit

Under

Test

(UUT)W
e

 p
ro

v
id

e
s
ti

m
u

li

W
e
 r

e
tr

ie
v

e
th

e
 o

u
tp

u
ts

UUT

'example'
C

B

A

F

Specified in

testbench
Simulator Output

library ieee;

use ieee.std_logic_1164.all;

entity tb_example is

end tb_example;

architecture behavior of tb_example is

component example

port (A,B,C: in std_logic;

F: out std_logic);

end component;

-- Inputs

signal A: std_logic := '0'; -- default value

signal B: std_logic := '0'; -- default value

signal C: std_logic := '0'; -- default value

-- Outputs

signal f: std_logic;

begin

uut: example port map (A=>A,B=>B,C=>C,F=>F);

stim_proc: process -- Stimulus process

begin

wait for 100 ns -- reset state

-- Stimuli:

A <='0';B <='0';C <='0'; wait for 20 ns;

A <='1';B <='0';C <='1'; wait for 20 ns;

wait;

end process;

end;

Daniel Llamocca

✓ XILINX ISE: I/O ASSIGNMENT
(obsolete)

UCF file: We need to map the I/Os of our logic circuit to physical
FPGA pins. In a board (e.g., Nexys-4), these FPGA pins are
connected to specific components: LEDs, switches, buttons, etc.

▪ EXAMPLE: The inputs A, B, C are assigned to switches.

The output F is assigned to an LED (ON if F is ‘1’). The

Nexys-4 Artix-7 FPGA Board is used.

▪ ISE 14.7: I/O standard must be specified for every pin

▪ UCF file: example.ucf

➢ example.zip: example.vhd, tb_example.vhd, example.ucf

ON (1)

OFF(0)

SW2 SW1 SW0 LED0

FPGA pins: R7 U8 U9 T8

I/O VHDL names:

NEXYS 4
schematic names:

A B C F

Inputs

NET "A" LOC="U9" | IOSTANDARD="LVCMOS33"; #SW0

NET "B" LOC="U8" | IOSTANDARD="LVCMOS33"; #SW1

NET "C" LOC="R7" | IOSTANDARD="LVCMOS33"; #SW2

Outputs

NET "F" LOC="T8" | IOSTANDARD="LVCMOS33"; #LED0

Daniel Llamocca

✓ VIVADO: I/O ASSIGNMENT
XDC file: Here, we map the I/Os of our circuit to physical FPGA
pins. In a board (e.g. Nexys-4), many FPGA pins are wired to
specific components (LEDs, switches, buttons, etc.).

▪ Example: Nexys-4 Artix-7 FPGA Board:
To connect the inputs a, b, c to SW2 SW1 SW0 and the output f to
LED0, we assign a, b, c, f to the corresponding FPGA pins (this

mapping information is provided by the board’s manufacturer).
▪ Vivado: The I/O standard and pin name must be specified for

every I/O port. Pin names are case-sensitive and must match
the port names as specified in the VHDL entity.
▪ XDC file: example.xdc

➢ example.zip: example.vhd, tb_example.vhd, example.xdc

ON (1)

OFF(0)

SW2 SW1 SW0 LED0

FPGA pins: R7 U8 U9 T8

I/O VHDL names:

NEXYS 4
schematic names:

a b c f

Inputs

set_property PACKAGE_PIN U9 [get_ports {a}]

set_property IOSTANDARD LVCMOS33 [get_ports {a}]

set_property PACKAGE_PIN U8 [get_ports {b}]

set_property IOSTANDARD LVCMOS33 [get_ports {b}]

set_property PACKAGE_PIN R7 [get_ports {c}]

set_property IOSTANDARD LVCMOS33 [get_ports {c}]

Outputs

set_property PACKAGE_PIN T8 [get_ports {f}]

set_property IOSTANDARD LVCMOS33 [get_ports {f}]

Daniel Llamocca

✓ EXAMPLE: Light Control

▪ There are three available switches. We want LED1 ON

when only one of the switches is in the ON position. And

we want LED0 ON only when the three switches are in the

ON position.

➢ light_ctrl.zip: light_ctrl.vhd, tb_light_ctrl.vhd,

light_ctrl.ucf

SW2 SW1 SW0 LED1 LED0

0 0 0 0 1

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 0 1

1 1 1 0 0

OFF (0)

ON (1)
SW2 SW1 SW0

LED1 LED0

𝐿𝐸𝐷1 = 𝑆𝑊2 𝑆𝑊1𝑆𝑊0 + 𝑆𝑊2𝑆𝑊1𝑆𝑊0 + 𝑆𝑊2𝑆𝑊1 𝑆𝑊0
→ 𝐿𝐸𝐷1 = 𝑆𝑊2 𝑆𝑊1 𝑆𝑊0 + 𝑆𝑊2𝑆𝑊1 𝑆𝑊0

𝐿𝐸𝐷0 = 𝑆𝑊2 + 𝑆𝑊1 + 𝑆𝑊0

Daniel Llamocca

✓ USE of std_logic_vector
▪ This type defines an array of bits.

▪ Here, we use the std_logic_vector type for an input signal.
library ieee;

use ieee.std_logic_1164.all;

entity test is

port (A: in std_logic_vector (3 downto 0);

-- A: |A3|A2|A1|A0|

y: out std_logic);

end test;

architecture struct of test is

begin

-- The circuit represents an AND gate

-- with 4 inputs: A(3), A(2), A(1), A(0)

y <= A(3) and A(2) and A(1) and A(0);

end struct;

y

A(3)

A(2)

A(1)

A(0)

A = A3A2A1A0

Daniel Llamocca

✓ USE of std_logic_vector
▪ Here, we use this type in a testbench for ‘test’.

* The values for a signal of
type std_logic_vector
can be specified in different
ways (see this testbench).

* A <=“0010”: It is

equivalent to:

A(3)<=‘0’; A(2)<=‘0’;

A(1)<=‘1’; A(0)<=‘0’;

library ieee;

use ieee.std_logic_1164.all;

entity tb_test is

end tb_test;

architecture behavior of tb_test is

component test

port (A: in std_logic_vector(3 downto 0);

F: out std_logic);

end component;

-- Inputs

signal A: std_logic_vector(3 downto 0):= "0000";

-- Outputs

signal f: std_logic;

begin

uut: test port map (A=>A,F=>F);

stim_proc: process -- Stimulus process

begin

wait for 100 ns -- reset state

-- Stimuli:

A <= "0010"; wait for 20 ns;

A <= x"F"; wait for 20 ns; -- A <="1111"

A <= "11"&"01"; wait for 20 ns; -- A <="1101"

wait;

end process;

end;

1111A 0000

F

0010 1101

100 ns 120 ns 140 ns

Daniel Llamocca

✓ USE of std_logic_vector
▪ In the example, we use the std_logic_vector type for an output signal.

library ieee;

use ieee.std_logic_1164.all;

entity tst is

port (A,B: in std_logic;

F: out std_logic_vector (3 downto 0);

-- F: |F3|F2|F1|F0

end tst;

architecture struct of tst is

begin

F(0) <= A and B; F(1) <= A xor B;

F(2) <= A or B; F(3) <= not(A);

end struct;

F = F3F2F1F0

F(3)

F(2)

F(1)

F(0)

A B

Daniel Llamocca

✓ EXAMPLE: Security Combination

▪ A lock is opened only when a certain combination of
switches exist: Switches: 01101011

▪ The lock will be represented by 8 LEDs. Open Lock  All

LEDS ON.

➢ sec_comb.zip: sec_comb.vhd, tb_sec_comb.vhd,

sec_comb.ucf

OFF (0)

ON (1)
SW7 SW6 SW5 SW4 SW3 SW2 SW1 SW0

L
E
D
7

L
E
D
6

L
E
D
5

L
E
D
4

L
E
D
3

L
E
D
2

L
E
D
1

L
E
D
0

