Unit 2 – Special-Purpose Arithmetic Circuits and Techniques

Integer/Fixed-Point Circuits

Addition/Subtraction

- Adder/Subtractor unit for two n-bit signed numbers

 Notice the extra Full Adder. This takes care of the sign-extension to make sure that the circuit does not generate overflow.

Multiplier/Addition Accumulator

- Addition of N n-bit numbers (signed):
 - Note how the required number of bits grow to $n + \lceil \log_2 N \rceil$

Adder Tree

- Unsigned numbers: no need to zero extend numbers, just use the carry out as the MSB of the result.
- Signed numbers: at every stage, we need to sign extend the operands, so as to get the proper result.
- Pipelining: Registers are used to increase the frequency of operation.
MULTIPLICATION

UNSIGNED MULTIPLICATION

- Sequential algorithm:

```
P ← 0, Load A, B
while B ≠ 0
  if b₀ = 1 then
    P ← P + A
  end if
  left shift A
  right shift B
end while
```

Example:

```
P ← 0, A ← 1111, B ← 1101
b₀ = 1 ⇒ P ← P + A = 1111.  A ← 11110, B ← 110
b₀ = 0 ⇒ P ← P = 1111.  A ← 111100, B ← 11
b₀ = 1 ⇒ P ← P + A = 1111 + 111100 = 1001011.  A ← 1111000, B ← 1
b₀ = 1 ⇒ P ← P + A = 1001011 + 1111000 = 11000011.  A ← 11110000, B ← 0
```

- Iterative Multiplier Architecture: FSM + Datapath circuit.

 `sclr`: synchronous clear. In this case, if `sclr = 1` and `E = 1`, the register contents are initialized to 0. The solution is computed in at most `M + 1` cycles.
Example (timing diagram):

SIGNIFICED MULTIPLICATION
- Based on the iterative unsigned multiplier:
DIVISION

UNSIGNED DIVISION

- Unsigned division: Iterative case
 For the implementation, we follow the hand-division method. We grab bits of A one by one and compare it with the divisor. If the result is greater or equal than B, then we subtract B from it. On each iteration, we get one bit of Q. The example below shows the case where \(A = 10001100; B = 1001 \).

<table>
<thead>
<tr>
<th>A: N=8 bits</th>
<th>A \leftarrow 10001100, B \leftarrow 1001, R \leftarrow 00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>B: M=4 bits</td>
<td>i = 7, (a_i = 1): R \leftarrow 00001 < 1001 \Rightarrow q_i = 0</td>
</tr>
<tr>
<td>R: M=4 bits</td>
<td>i = 6, (a_i = 0): R \leftarrow 00010 < 1001 \Rightarrow q_i = 0</td>
</tr>
<tr>
<td>Intermediate subtraction requires (M+1) bits</td>
<td>i = 5, (a_i = 0): R \leftarrow 00100 < 1001 \Rightarrow q_i = 0</td>
</tr>
<tr>
<td>Q: N=8 bits</td>
<td>i = 4, (a_i = 0): R \leftarrow 01000 < 1001 \Rightarrow q_i = 0</td>
</tr>
<tr>
<td></td>
<td>i = 3, (a_i = 1): R \leftarrow 1001 \geq 1001 \Rightarrow q_i = 1, R \leftarrow 10001 - 1001 = 0100</td>
</tr>
<tr>
<td></td>
<td>i = 2, (a_i = 1): R \leftarrow 10001 \geq 1001 \Rightarrow q_i = 1, R \leftarrow 10001 - 1001 = 0100</td>
</tr>
<tr>
<td></td>
<td>i = 1, (a_i = 0): R \leftarrow 10000 \geq 1001 \Rightarrow q_i = 1, R \leftarrow 10000 - 1001 \Rightarrow 0111</td>
</tr>
<tr>
<td></td>
<td>i = 0, (a_i = 0): R \leftarrow 01110 \geq 1001 \Rightarrow q_i = 1, R \leftarrow 01110 - 1001 \Rightarrow 0101</td>
</tr>
<tr>
<td></td>
<td>\Rightarrow Q = 00001111, R \leftarrow 0101</td>
</tr>
</tbody>
</table>

- An iterative architecture is depicted in the figure for A with N bits and B with M bits, \(N \geq M \). The register R stores the remainder. At every clock cycle, we either: i) shift in the next bit of A, or ii) shift in the next bit of A and subtract B.

- \((M+1)\)-bit unsigned subtractor: We can apply 2C operation to B. If the subtraction is negative, \(cout = 0 \). If the subtraction is positive, \(cout = 1 \) (here, we only need to capture R with \(M \) bits). This determines \(q_{i+1} \), which is shifted into the register A, which after \(N \) cycles holds Q.

\[\text{ALGORITHM} \]
\begin{align*}
R &= 0 \\
\text{for } i = N-1 \text{ downto } 0 \\
\text{left shift R (input = } a_i) \\
\text{if } R \geq B \\
& \quad q_i = 1, R \leftarrow R - B \\
\text{else} \\
& \quad q_i = 0 \\
\text{end} \\
\text{end} \\
\end{align*}
Example (timing diagram $N = 5, M = 4$). i) $DA = 27, DB = 9$, ii) $DA = 20, DB = 7$

- **Signed Division**
 - Based on the iterative unsigned divider

 ✓ Signed division: In this case, we first take the absolute value of the operators A and B. Depending on the sign of these operators, the division result (positive) of $\text{abs}(A)/\text{abs}(B)$ might require a sign change.
FLOATING POINT CIRCUITS

FLOATING POINT ADDER/SUBTRACTOR

- e_1, e_2: biased exponents. Note that $|e_1 - e_2|$ is equal to the subtraction of the unbiased exponents.

- **U_ABS_SIGN**: This block computes $|e_1 - e_2|$. It also generates the signal sm.

 $e_1, e_2 \in [0, 2^E - 1] \rightarrow e_1 - e_2 \in [-2^E - 1, 2^E - 1], |e_1 - e_2| \in [0, 2^E - 1]$.

 ✓ $e_1 \geq e_2 \rightarrow sm = 0, ep = e_1, f_x = f_2, f_y = f_1, b_x = b_2, b_y = b_1$

 ✓ $e_1 < e_2 \rightarrow sm = 1, ep = e_2, f_x = f_1, f_y = f_2, b_x = b_1, b_y = b_2$

- Denormal numbers: They occur if $e_1 = 0$ or $e_2 = 0$:
 ✓ $e_1 = 0 \rightarrow b_1 = 0, e_1 \neq 0 \rightarrow b_1 = 1$.
 ✓ $e_2 = 0 \rightarrow b_2 = 0, e_2 \neq 0 \rightarrow b_2 = 1$.

- **SWAP blocks**: In floating point addition/subtraction, we usually require alignment shift: one operator (called s_x) is divided by $2^{|e_1-e_2|}$, while the other (called s_y) is not divided.
 o First SWAP block: It generates s_x and s_y out of s_1 and s_2. That way we only feed s_x to the barrel shifter.
 o Second SWAP block: We execute $A \pm B$. For proper subtraction, we must have the minuend t_1 (either s_2 or $\frac{s_1}{2^{|e_1-e_2|}}$) on the left hand side, and the subtrahend t_2 (either s_2 or $\frac{s_2}{2^{|e_1-e_2|}}$) on the right hand side. This blocks generates t_1 and t_2.

<table>
<thead>
<tr>
<th>sm</th>
<th>ep</th>
<th>s_x</th>
<th>s_y</th>
<th>t_1</th>
<th>t_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_1 \geq e_2$</td>
<td>0</td>
<td>e_1</td>
<td>$s_2 = b_2, f_2$</td>
<td>$s_1 = b_1, f_1$</td>
<td>s_1</td>
</tr>
<tr>
<td>$e_1 < e_2$</td>
<td>1</td>
<td>e_2</td>
<td>$s_1 = b_1, f_1$</td>
<td>$s_2 = b_2, f_2$</td>
<td>$\frac{s_1}{2^{</td>
</tr>
</tbody>
</table>

- **Barrel shifter 2^4**: This circuit performs alignment of s_x, where we always shift to the right by $|e_1 - e_2|$ bits.

- **SM to 2C**: Sign and magnitude to 2's complement converter. If the sign (sg_1, sg_2) is 0, then only a 0 is appended to the MSB. If the sign is 1, we get the negative number in 2C representation. Output bit-width: $P + 2$ bits.

- **Main adder/subtractor**: This circuit operates in 2C arithmetic. Note that we must sign-extend the $(P + 2)$-bit operands to $P + 3$ bits.
 Input operands $\in [-2^{P+1} + 1, 2^{P+1} - 1]$, Output result $\in [-2^{P+2} + 2, 2^{P+2} - 2]$.

- **U_ABS block**: It takes the absolute value of a number represented in 2C arithmetic. The output is provided as an unsigned number. The absolute value $\in [0, 2^{P+2} - 2]$, this only requires $P + 2$ bits in unsigned representation.

- **Leading Zero Detector (LZD)**: This circuit outputs a number that indicates the amount of shifting required to normalize the result of the main adder/subtractor. It is also used to adjust the exponent. This circuit is commonly implemented using a priority encoder. $result \in [-1, p]$. The result is provided as a sign and magnitude.

<table>
<thead>
<tr>
<th>result</th>
<th>output</th>
<th>sign</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0, p]$</td>
<td>$sh \in [0, p]$</td>
<td>0</td>
<td>The barrel shifter needs to shift to the left by sh bits. Exponent adder/subtractor needs to subtract sh from the exponent ep.</td>
</tr>
<tr>
<td>-1</td>
<td>$sh = 1$</td>
<td>1</td>
<td>The barrel shifter needs to shift to the right by 1 bit. Exponent adder/subtractor needs to add 1 to the exponent ep.</td>
</tr>
</tbody>
</table>

- **Exponent adder/subtractor**: The figure is not detailed. This circuit operates in 2C arithmetic; as the input operands are unsigned, we zero-extend to $E + 1$ bits. Note that for ordinary numbers, $ep \in [1, 2^E - 2]$. The ($E + 1$)-bit result (biased exponent) cannot be negative: at most, we subtract p from ep, or add 1. Thus, we use the unsigned portion: E bits (LSBs).

- **Barrel shifter 2^2**: This performs normalization of the final summation. We shift to the left (from 0 to P bits) or to the right (1 bit). The normalization step might incur in truncation of the LSBs.
This circuit works for ordinary numbers.
- NaN, $\pm \infty$: not considered.
- Denormal numbers: not implemented: this would require $|e_1 - e_2| = |1 - e_2|$ when $e_1 = 0$, or $|e_1 - 1|$ when $e_2 = 0$. But we implement $A \pm B$ when $A = 0, B = 0, A = B = 0$. If $A = 0$ or $B = 0$, then $s_x = 0$ (barrel shifter input). So, the incorrect $|e_1 - e_2|$ does not matter; ep will also be correct.
- After normalization, the unbiased e might be $2^E - 1$. This indicates overflow, but we would need to make $f = 0$. We do not implement this, so overflow is not detected.

Typical cases:
- Single Precision: $E = 8, P = 23$.
- Double Precision: $E = 8, P = 52$.

Diagram Description

- **FP add/sub**
 - Inputs: A, B, S
 - Outputs: S
- **U_ABS_SIGN**
 - Inputs: e_1, e_2
 - Outputs: s, ep
- **LZD**
 - Inputs: d, e, p
 - Outputs: s, f
- **SWAP**
 - Inputs: t_1, t_2
 - Outputs: s_1, s_2
FLOATING POINT MULTIPLIER AND DIVIDER

- **Multiplier**: An unsigned multiplier is required. If we use a sequential multiplier, an FSM is required to control the dataflow.
 - We need to add the unbiased exponents: $e_p = e_1 + e_2$. Here, a simple unsigned adder suffices. Since this operation adds $2 \times \text{bias}$ to e_p, we subtract bias from the final adjusted exponent e_x.
 - The multiplier will require $2P+2$ bits. Here, we need to truncate to $P+2$ bits.

- **Divider**: An unsigned divider is required. If we use a sequential divider, an FSM is required to control the dataflow.
 - We need to subtract the unbiased exponents: $e_p = e_1 - e_2$. This requires us to operate in $2C$ arithmetic. Since this operation gets rid of the bias, we need to add the $\text{bias} = 2^{\text{bias}} - 1$ to the final adjusted exponent e_x.
 - The divider can include any number of extra fractional bits. We use P fractional bits of precision.
DUAL FIXED-POINT CIRCUITS

DFX ADDER/SUBTRACTOR
- Here, we add two DFX numbers A and B with \(n \) bits. To do this, we get rid of the exponent (E) bit, align the numbers, and then add two \((n-1)\) bit significands in fixed point arithmetic. Then, we convert the FX result into the DFX number.

PRE-SCALER
- It makes sure that the input operands (Asig, Bsig) are aligned. Four possibilities exist, based on the exponents of A and B:

<table>
<thead>
<tr>
<th>(A_{n-1})</th>
<th>(B_{n-1})</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>(\text{num0 + num0. No need to align.})</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(\text{num0 + num1. Here, num0 is converted to num1. The } p_0 - p_1 \text{ discarded bits are saved.})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(\text{num1 + num0. Here, num0 is converted to num1. The } p_0 - p_1 \text{ discarded bits are saved})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(\text{num1 + num1. No need to align.})</td>
</tr>
</tbody>
</table>

- If they both are either \text{num0} or \text{num1}, addition is straightforward.

- If one is \text{num0} and the other is \text{num1}, we have to align the fractional points to \(p_1 \). This means that we convert \([n-1 \ p_0] \) to \([n-1 \ p_1] \) by discarding \(p_0 - p_1 \) fractional bits and by sign-extending the extra \(p_0 - p_1 \) MSBs. This is not exactly the same as converting \text{num0} to \text{num1}, because the \text{num0} number fits with \(n \) bits, though the operation is very similar.

- Converting from \([n-1 \ p_0] \) to \([n-1 \ p_1] \): This operation consists of: arithmetic shift of \(p_0 - p_1 \) bits to the right, truncation of \(p_0 - p_1 \) LSBs, while keeping the fractional point where it is. This operation is not exactly \(\gg p_0 - p_1 \), but it is usually represented as such.

- Improving DFX Adder accuracy: We save the \(p_0 - p_1 \) truncated LSBs. In the post-scaler, we might need to convert \([n \ p_1] \) to \([n \ p_0] \). This operation requires shifting to the left, and we can shift in the truncated LSBs. This only happens when A and B have different exponents. If A and B are both \text{num0}, the sum S is \([n \ p_0] \): we cannot shift in any other bit. If A and B are both \text{num1}, the sum S is \([n \ p_1] \), and there were never truncated LSBs to begin with.

FIXED-POINT ADDITION
- Once the numbers are aligned, we perform the fixed-point addition of two \((n-1)\) bit FX numbers. This is done by sign-extending the operands to \(n \) bits; the result has \(n \) bits with either \(p_0 \) or \(p_1 \) fractional bits.
- DFX addition: We want the result to have the same number of bits as the inputs. We can always sign-extend the MSB of the significand to avoid overflow, but this defeats the purpose of DFX (we better just use FX).
- Overflow of FX addition: Here, we consider the overflow as if the addition were of two \((n-1)\) bit numbers (with no sign-extension), i.e., \(\text{overflow}_{n-1} = c_{n-1} \oplus c_{n-2} \). We need this overflow since it tells us whether \(n - 1 \) bits suffice for the addition.
result. Note that the \(n \)-bit addition overflow is always zero (due to sign-extension). The FX adder performs \(n \)-bit addition (by sign-extending); however, note that the DFX format requires one exponent bit and \(n - 1 \) significand bits.

POST-SCALER
- If at least one input is \(\text{num}1 \), then the sum \(S \) will be in \([n \, p_1]\). If \(A \) and \(B \) are \(\text{num}0 \), then the sum \(S \) will be \([n \, p_0]\). Then, we need to determine whether the DFX \(n \)-bit number is a \(\text{num}0 \) or \(\text{num}1 \). If the sum \([n \, p_0]\) has overflow\(\text{-}1 = 1 \), then we convert the number to \(\text{num}1 \). If the sum \([n \, p_1]\) has overflow\(\text{-}1 = 1 \), then the DFX addition requires an overflow.
- From \([n \, p_0]\) to \([n \, p_1]\): This is the same circuit \(\gg p_0 - p_1 \) as in the pre-scaler, but here we use \(n \) bits as input.
- From \([n \, p_1]\) to \([n \, p_0]\): Left shift with zero pad (or we shift in the truncated bits that we saved).

3-input Multiplexer:
- It takes three \(n \)-bit FX inputs and outputs one \((n - 1)\)-bit FX output (the MSB is discarded). Note how the saved \(p_0 - p_1 \) bits might be used when the final summation needs to be converted to \(\text{num}0 \).

Range Detector
- It determines whether a fixed point (FX) number \([\text{nin} \, \text{pin}]\) can be represented as a DFX \(\text{num}0 \) number with \(n \) bits. Note that \(E_{\text{RD}} = 1 \) does not necessarily imply a DFX \(\text{num}1 \) number with \(n \) bits, because it may actually need more than \(n \) bits.
- For the DFX number to be \(\text{num}0 \) with \(n \) bits, the corresponding FX number has to be such that the \(\text{nin} - \text{pin} - (n - 1 - p_0) + 1 \) MSBs have to be all 1 or 0 (due to sign extension). This means only one of those bits is needed.
- The figure assumes that: \(\text{nin} - \text{pin} \geq n - 1 - p_0 \). If \(\text{nin} - \text{pin} < n - 1 - p_0 \) then the FX number is a \(\text{num}0 \) DFX number with \(n \) bits. If \(p_0 < \text{pin} \), we need to get rid of \(p_0 - \text{pin} \) LSBs (we lose precision here).

\[
E_{\text{RD}} = b_{\text{nin} - \text{pin} - 1} \ldots b_{n - 1 - p_0 - 1} + b_{\text{nin} - \text{pin} - 1} \ldots b_{n - 1 - p_0 - 1}
\]

The range detector needs to know FX format of the input signal (sum \(S \)), which could be \([n \, p_0]\) or \([n \, p_1]\). In the DFX adder/subtractor, we assume the input format to be \([n \, p_1]\). So, what happens if the input format is \([n \, p_0]\)? Here, the Range Detector output will be invalid. This is why we need the signal \(f_{\text{num}0} \) which indicates whether the format of \(S \) is \([n \, p_0]\).
- \(f_{\text{num}0} = 0 \): This means that the format of \(S \) is \([n \, p_0]\) and that \(E_{\text{RD}} \) is invalid. Here, \(E = 0 \). However, this does not mean that the number \(S \) can be represented in DFX as a \(\text{num}0 \) with \(n \) bits (since the result of the range detector is invalid).
- We need the overflow\(\text{-}n_1 \) bit to determine that. If this bit is 1, we need to convert \(S \) to \(\text{num}1 \) to avoid DFX overflow; if that bit is 0 the number \(S \) is a \(\text{num}0 \).
- \(f_{\text{num}0} = 1 \): This means that the format of \(S \) is \([n \, p_1]\). Here, \(E = E_{\text{RD}} \). If \(E = 0 \), the sum \(S \) is a \(\text{num}0 \) with \(n \) bits. If \(E = 1 \), the sum \(S \) might be a \(\text{num}1 \) with \(n \) bits (we need to determine overflow\(\text{-}n_1 \) this).

- overflow\(\text{-}n_1 \): The adder/subtractor sign-extends the inputs of width \(n - 1 \) and the result is a \(n \)-bit number. The overflow of this circuit is always 0 (due to sign extension). Overflow\(\text{-}n_1 \) refers to the overflow when only considering the \((n - 1)\)-bit addition/subtraction. This useful signal determines whether the sum \(S \) requires more than \(n - 1 \) bits.
- Addition: We save the \(p_0 - p_1 \) bits that are discarded in the Pre-Scaling stage. If the final result is a \(\text{num}0 \), we can bring back those bits to increase precision. But if the final result is \(\text{num}1 \), we lose those bits for good.
Subtraction: We would need a drastic change in the architecture to save those \(p_0 - p_1 \) bits discarded in the Pre-scaler. When \(\text{addsub} = 1 \), the carry in of the FX adder/subtractor is 1, thus the \(p_0 - p_1 \) bits of the subtrahend (even if flipped) are not useful. So, we do not save the \(p_0 - p_1 \) bits in the case of subtraction.

Overflow (DFX Adder/Subtractor): This occurs when the sum \(S \) cannot be represented as a \(\text{num}1 \) with \(n \) bits. One way to overcome this problem is to increase the DFX format to \(n + 1 \) bits, though this is not customary as the idea of DFX arithmetic is to keep the same number of bits throughout the operations.

Control Block:

<table>
<thead>
<tr>
<th>overflow(_0)</th>
<th>(E_c)</th>
<th>(f_{\text{num}})</th>
<th>overflow</th>
<th>ECTRL</th>
<th>sCTRL</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Sum (S) is (\lfloor n \rfloor) and no overflow with (n - 1) bits: The sum (S) can be represented in DFX as a (\text{num}0) with (n) bits.</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>Sum (S) is (\lfloor n \rfloor) and (E_c = 0) means that the sum (S) can be represented in DFX as a (\text{num}0) with (n) bits.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>01</td>
<td>Impossible case: (E_c) should be 0 if (f_{\text{num}} = 0).</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>00</td>
<td>Sum (S) is (\lfloor n \rfloor) and no overflow with (n - 1) bits: The sum (S) can be represented as a (\text{num}1) with (n) bits.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>01</td>
<td>Sum (S) is (\lfloor n \rfloor) and overflow with (n - 1) bits: The sum (S) needs to be first converted to (\lfloor n \rfloor), where it can be represented as a (\text{num}1) with (n) bits.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>Impossible case: Sum (S) is (\lfloor n \rfloor) and (E_c = 0) means that the sum (S) can be represented in DFX as a (\text{num}0) with (n) bits. So, overflow cannot be 1.</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>01</td>
<td>Impossible case: (E_c) should be 0 if (f_{\text{num}} = 0).</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>00</td>
<td>Sum (S) is (\lfloor n \rfloor), (E_c = 1) means that (S) is not a (\text{num}0) with (n) bits. As there is no overflow with (n - 1) bits, the sum (S) can be represented as a (\text{num}1) with (n) bits.</td>
</tr>
</tbody>
</table>

Examples: \(n = 16 \), \(p_0 = 8 \), \(p_1 = 4 \)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Sum (FX)</th>
<th>overflow(_1)</th>
<th>(E_{\text{reg}})</th>
<th>(E_c)</th>
<th>Post-Scale</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(01.0A + 01.0B)</td>
<td>(01.0A + 01.0B = 02.15)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No need</td>
<td>02.15</td>
</tr>
<tr>
<td>(800.3 + 00.CA)</td>
<td>(800.3 + 00.CA = 000.FA)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>To (\lfloor n \rfloor), append A</td>
<td>00.FA</td>
</tr>
</tbody>
</table>
OTHER CIRCUITS

FIXED-POINT SQUARE ROOT

- Algorithms for hardware implementation amount to a 'binary search' and can be classified as Restoring and Non-Restoring.
- D (radical): $2n$ bits, Q (square root): n bits.

<table>
<thead>
<tr>
<th>Restoring Algorithm</th>
<th>Non-Restoring Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q \leftarrow 0$</td>
<td>$q_{n-1} \leftarrow 1$</td>
</tr>
<tr>
<td>for $k = n - 1$ downto 0</td>
<td>for $k = n - 2$ downto 0</td>
</tr>
<tr>
<td>$q_k \leftarrow 1$</td>
<td>if $D < Q^2$ then</td>
</tr>
<tr>
<td>if $D < Q^2$ then</td>
<td>$Q = Q - 2^k$</td>
</tr>
<tr>
<td>$q_k \leftarrow 0$</td>
<td>else</td>
</tr>
<tr>
<td>end</td>
<td>$Q = Q + 2^k$</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
</tbody>
</table>

Example: $D = 40 = 101000, Q = 000, n = 3$
- $k = 2$: $q_2 = 1 (Q = 100) < 4^2$? No
- $k = 1$: $q_1 = 1 (Q = 110) < 6^2$? No
- $k = 0$: $q_0 = 1 (Q = 111)$
- $40 < 7^2$? Yes $\Rightarrow q_0 = 0 (Q = 110)$
Result: $Q = 110, R = D - Q^2 = 0100$

Example: $D = 40 = 101000, n = 3$
- $k = 1$: $40 < 4^2$? No $\Rightarrow Q = Q + 2^1 = 110$
- $k = 0$: $40 < 6^2$? No $\Rightarrow Q = Q + 2^2 = 111$
Result: $Q = 111, R = D - Q^2$? The LSB of the result might differ from that of the restoring case. Also, the remainder might be incorrect when using this algorithm.

OPTIMIZED NON-RESTORING INTEGER SQRT ALGORITHM

- This algorithm for non-restoring square root VLSI implementation, described in A New Non-Restoring Square Root Algorithm and its VLSI Implementation, Y. Li, W. Chu, 1996, has proved to outperform most hardware algorithms. A simple addition and subtraction is required based on the result bit generated in the previous iteration. No multipliers or multiplexors are needed. The result of the addition or subtraction is fed via registers to the next iteration directly even if it is negative.
- At the last iteration, if the remainder is non-negative, it is the precise remainder. Otherwise, we can get the precise remainder by an addition operation, but since it is rarely used, it is dismissed in order to reduce resource consumption.
- Radical: $D = d_{2n-1}d_{2n-2}d_{2n-3}d_{2n-4}...d_1d_0$
- Square Root: $Q = q_{n-1}q_{n-2}...q_0$

We define: $Dk = d_{2n-1}d_{2n-2}...d_k, k = 0, 1, ..., n - 1$. D_{2k} has $2(n - k)$ bits. Q_k has $n - k$ bits.

for $k = n - 1$ downto 0

if $k = n - 1$ then

$R'_k = d_{2k+1}d_{2k} - 01$

else

$R'_k = \begin{cases}
(R'_{k+1}d_{2k+1}d_{2k} - Q_{k+1}01, & \text{if } q_{k+1} = 1 \\
(R'_{k+1}d_{2k+1}d_{2k} + Q_{k+1}11, & \text{if } q_{k+1} = 0
\end{cases}$

end
$q_k = \begin{cases}
1, & \text{if } R'_k \geq 0 \\
0, & \text{if } R'_k < 0
\end{cases}$

end

Remainder $R = R_0 = \begin{cases}
R'_0, & \text{if } R'_0 \geq 0 \\
R'_0 + Q_01, & \text{if } R'_0 < 0
\end{cases}$

- Estimated remainder: $R'_k = r_{n-k}r_{n-k+1}r_{n-k-2}...r_0$ (requires $n - k + 1$ bits) The MSB (sign bit) determines the value of q_k (q_k is computed at each iteration). The R'_k value generated at each iteration is used in the next iteration even if it is negative (the 2C representation is used here). Note that the operands are always treated as unsigned numbers.
- Finally, in order to get the actual remainder $R = R_0$, only the $n + 1$ LSBS of R'_0 are needed (the MSB determines q_0). In practice, the remainder is seldom needed.

Example:
- $D = 0111111, n = 4, R = 00000, Q = 0000$
- $k = n - 1 = 3$: $R'_3 = 01 - 01 = 00, R'_3 = r_3'r_4'r_4' = 00, r_3' \geq 0 \rightarrow q_3 = 1$ $Q = 1000$
- $k = n - 2 = 2$: $R'_2 = R'_311 - Q_301 = 0011 - 0101 = 10, R'_2 = r_2'r_3'r_3'r_2' = 110, R'_3 < 0 \rightarrow Q_2 = 0$ $Q = 1000$

When the subtraction result is < 0, we use the 2C representation with $n - k + 1$ bits. The sign bit decides the value of q_k.
- $k = 1$: $R'_1 = R'_211 + Q_211 = 11011 + 1011 = 100110, R'_1 = r_1'r_3'r_2'r_1 = 0110, R'_1 \geq 0 \rightarrow q_1 = 1$ $Q = 1010$
- $k = 0$: $R'_0 = R'_111 - Q_001 = 011011 - 10101 = 00110, R'_0 = r_0'r_4r_2r_3'r_2'r_0' = 001100, R'_0 \geq 0 \rightarrow q_0 = 1$ $Q = 1011$

Also: $R = R'_0 = 00110$
ITERATIVE ARCHITECTURE

- The size of the elements (registers, adder/subtractor) will be:
 - Register R: $n + 1$ bits
 - Register Q: n bits

Adder/subtractor: $n + 2$ bits. This is because the last iteration requires $R'_0 = (R'_1d_1d_0 - Q_11).1f q_1 = 1$
and
$R'_1d_1d_0 + Q_11).1f q_1 = 0$. Thus, we need operands with $n + 2$ bits. However, the result R'_0 only
requires $n + 1$ bits. Also, for the purposes of subtraction, the operands are treated as signed numbers.

$(n + 2)$-bit adder/subtractor: the 2 LSBs performs either $xy - 01$ or $xy + 11$, $xy = d_2k + d_2k$. The operation yields:
cba, where c is the carry-in of the next stage of the adder/subtractor, and ba the result of the operation.

ba depends only on xy, but c depends on the operation. However, a standard
adder/subtractor with carry-in treats the carry-in as in positive logic when adding, and as in negative logic when subtracting. This allows us to re-define
the truth table, where we invert c (for subtraction) in the truth table so that
it works properly in the adder/subtractor with carry in:

$cba = xy + 11$
$cba = xy - 01$

<table>
<thead>
<tr>
<th>xy</th>
<th>cba</th>
<th>xy</th>
<th>cba</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>011</td>
<td>00</td>
<td>111</td>
</tr>
<tr>
<td>01</td>
<td>100</td>
<td>01</td>
<td>000</td>
</tr>
<tr>
<td>00</td>
<td>101</td>
<td>00</td>
<td>001</td>
</tr>
<tr>
<td>01</td>
<td>110</td>
<td>01</td>
<td>010</td>
</tr>
</tbody>
</table>

Now, c and ba depend only on 'xy': $c = x + y, b = \bar{x} \bar{y}, a = y$

This reduces the width of the adder/subtractor by 2 bits. ba, implemented
with logic gates, is placed on the 2 LSBs of the register R', and the carry-in
comes from the OR gate. Thus, we only need an adder/subtractor with n bits
and a carry-in.

Summation/subtraction operation

- $R'k+1d_{2k+1}d_{2k}$. For $k = 0$, this operator requires $n + 2$ bits.
- $Q_{k+1}1$ or $Q_{k+1}11$. For $k = 0$, this operator requires $n + 1$ bits (Q_{k+1} requires $n - 1$ bits) and we need to zero-extend it.
- Result $R'k$: for $k = 0$, it requires $n + 1$ bits. So, for $k = 0$, we only need $n - 1$ bits (LSBs) out of the adder/subtractor (we get the other 2 bits from x and y). We use the MSB as the sign bit.

COMPUTING MORE PRECISION BITS

- If x more precision bits are needed, we can append $2x$ zeros to D. This implies that we need to add x extra bits to Q.
- $D_p = D \times 2^x, Q_p = \sqrt{D_p}, Q = \sqrt{D}$
- $D_p: 2n + 2x$ bits, $Q_p: n + x$ bits. x: number of precision bits.

Hardware changes

- Let’s define: $nq = n + x$. We use Q with nq bits, R with $nq + 1$ bits. The adder/subtractor uses nq bits.
- There is no need to increase the size of the register D. We can still use $2n$ bits, as '00' is always shifted in (this emulates the
2x zeros in the first x cycles). In the FSM, C starts with $nq - 1$, the result is obtained after nq cycles.
Example: (restoring algorithm)

Get \sqrt{D} using x = 2 precision bits. $D = 110111 = 55$, $n = 3$

Then: $D_p = 1101110000 = 880$. Then $nq = n + x = 5$

$k = 4$: $q_4 = 1$ ($Q = 10000$). 880 < 16^2? No

$k = 3$: $q_3 = 3$ ($Q = 11000$). 880 < 24^2? No

$k = 2$: $q_2 = 1$ ($Q = 11100$). 880 < 28^2? No

$k = 1$: $q_1 = 1$ ($Q = 11110$). 880 < 30^2? Yes $\rightarrow q_2 = 0$ ($Q = 11100$)

$k = 0$: $q_0 = 1$ ($Q = 11101$). 880 < 29^2? No

Result: $Qp = 11101, Rp = Dp - Qp^2 = 100111$

Final Result: $Q = 111.01 = 7.25 \approx \sqrt{55}$

What if the input (let’s call it D_f) is in fixed-point format [2n 2p]?

- The integer input (called D) is related to D_f by: $D_f = D \times 2^{-2p}$, $2n = $ number of total bits of D_f.

- So, we first compute the square root of D (i.e., D_f without the fractional point), and then we place the fractional point so that the number has p fractional bits.

- If we need extra precision bits, we only need to add $2x$ zeros to D. Thus $D_p = D \times 2^{2x}$.

- Again, we first compute the square root of D_p, and then we place the fractional point so that the number Q_f has $p + x$ fractional bits.

Example (restoring algorithm)

$D_f = 111011.1011 = 59.6875$, $p = 2$, $n = 5$. Format [10 4].

Q_f format: [n + x p + x]. x: extra precision bits.

Step 1: Get the integer D.

$\Rightarrow D = 1110111011 = 955$

Step 2: Add (optionally) $2x = 4$ zeros

$\Rightarrow D_p = 11101110110000 = 15280$

Step 3: Get $Q_p = \sqrt{D_p}$

Then: $D_p = 11101110110000 = 15280$. Then $nq = n + x = 5 + 2 = 7$

$k = 6$: $q_6 = 1$ ($Q = 1000000$). 15280 < 64^2? No

$k = 5$: $q_5 = 1$ ($Q = 1100000$). 15280 < 96^2? No

$k = 4$: $q_4 = 1$ ($Q = 1110000$). 15280 < 122^2? No

$k = 3$: $q_3 = 1$ ($Q = 1111000$). 15280 < 120^2? No

$k = 2$: $q_2 = 1$ ($Q = 1111100$). 15280 < 124^2? Yes $\rightarrow q_2 = 0$ ($Q = 1111000$)

$k = 1$: $q_1 = 1$ ($Q = 1111010$). 15280 < 122^2? No

$k = 0$: $q_0 = 1$ ($Q = 1111011$). 15280 < 123^2? No

Result: $Qp = 1111011, Rp = Dp - Qp^2 = 10010111$

Final Result ($p + x = 4$): $Qf = 111.1011 = 7.6875 \approx \sqrt{59.6875}$
CORDIC (COORDINATE ROTATION DIGITAL COMPUTER) ALGORITHM

CIRCULAR CORDIC
- The original circular CORDIC algorithm is described by the following iterative equations, where \(i \) is the index of the iteration \((i = 0, 1, 2, 3, ..., N - 1)\). Depending on the mode of operation, the value of \(\delta_i \) is either +1 or −1:

\[
\begin{align*}
x_{i+1} &= x_i + \delta_i y_i 2^{-i} \\
y_{i+1} &= y_i - \delta_i x_i 2^{-i} \\
z_{i+1} &= z_i + \delta_i \theta_i \cdot \theta_i = Tan^{-1}(2^{-i})
\end{align*}
\]

Rotation: \(\delta_i = +1 \) if \(z_i < 0; -1, otherwise \)
Vectoring: \(\delta_i = +1 \) if \(y_i \geq 0; -1, otherwise \)

- Depending on the mode of operation, the quantities \(X, Y \) and \(Z \) tend to the following values, for sufficiently large \(N \):

<table>
<thead>
<tr>
<th>Rotation Mode</th>
<th>Vectoring Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n = A_n(x_0 \cos z_0 - y_0 \sin z_0))</td>
<td>(x_n = A_n \sqrt{x_0^2 + y_0^2})</td>
</tr>
<tr>
<td>(y_n = A_n(y_0 \cos z_0 + x_0 \sin z_0))</td>
<td>(y_n = 0)</td>
</tr>
<tr>
<td>(z_n = 0)</td>
<td>(z_n = z_0 + \tan^{-1}(y_0/x_0))</td>
</tr>
</tbody>
</table>

\(A_n \leftarrow \prod_{i=1}^{N-1} \sqrt{1 + 2^{-2i}} \). For \(N \to \infty \), \(A_n = 1.647 \). The \(\tan^{-1} \) function here has a different definition (called \(atan2 \)), as the values it compute lie in the range \([-180^\circ, 180^\circ]\), i.e., it indicates the quadrant where the point \((x_0, y_0)\) lies.

- With a proper choice of the initial values \(x_0, y_0, z_0 \) and the operation mode, the following functions can be directly computed:
 - \(y_0 = 0, x_0 = 1/A_n \), rotation mode \(\rightarrow x_n = \cos z_0, y_n = \sin z_0 \)
 - \(z_0 = 0, x_0 = 1 \), vectoring mode \(\rightarrow z_n = \tan^{-1}(y_0/x_0) \)
 - \(x_0 = a, y_0 = b \), vectoring mode \(\rightarrow x_n = A_n \sqrt{a^2 + b^2} \). We need to post-scale the output.

LINEAR CORDIC
- This is an extension to the circular CORDIC. No scaling corrections are needed. \((i = 1, 2, 3, ...)\).

\[
\begin{align*}
x_{i+1} &= x_i \\
y_{i+1} &= y_i - \delta_i x_i 2^{-i} \\
z_{i+1} &= z_i + \delta_i \theta_i \cdot \theta_i = 2^{-i}
\end{align*}
\]

Rotation: \(\delta_i = +1 \) if \(z_i < 0; -1, otherwise \)
Vectoring: \(\delta_i = +1 \) if \(x_i y_i \geq 0; -1, otherwise \)

- Depending on the mode of operation, the quantities \(X, Y \) and \(Z \) tend to the following values, for sufficiently large \(N \):

<table>
<thead>
<tr>
<th>Rotation Mode</th>
<th>Vectoring Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n = x_1)</td>
<td>(x_n = x_1)</td>
</tr>
<tr>
<td>(y_n = y_1 + x_1 z_1)</td>
<td>(y_n = 0)</td>
</tr>
<tr>
<td>(z_n = 0)</td>
<td>(z_n = z_1 + y_1/x_1)</td>
</tr>
</tbody>
</table>

- With a proper choice of the initial values \(x_0, y_0, z_0 \) and the operation mode, the following functions can be directly computed:
 - \(y_1 = 0 \), rotation mode \(\rightarrow y_n = x_1 z_1 \)
 - \(z_1 = 0 \), vectoring mode \(\rightarrow z_n = y_1/x_1 \)

HYPERBOLIC CORDIC
- This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where \(i \) is the index of the iteration \((i = 1, 2, 3, ...)\). The following iterations must be repeated to guarantee convergence: \(i = 4, 13, 40, ..., k, 3k + 1 \).

\[
\begin{align*}
x_{i+1} &= x_i - \delta_x x_i 2^{-i} \\
y_{i+1} &= y_i - \delta_y x_i 2^{-i} \\
z_{i+1} &= z_i + \delta \theta_i \cdot \theta_i = \tanh^{-1}(2^{-i})
\end{align*}
\]

Rotation: \(\delta_i = +1 \) if \(z_i < 0; -1, otherwise \)
Vectoring: \(\delta_i = +1 \) if \(x_i y_i \geq 0; -1, otherwise \)

- Depending on the mode of operation, the quantities \(X, Y \) and \(Z \) tend to the following values, for sufficiently large \(N \):

<table>
<thead>
<tr>
<th>Rotation Mode</th>
<th>Vectoring Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n = A_n(x_1 \cosh z_1 + y_1 \sinh z_1))</td>
<td>(x_n = A_n \sqrt{x_1^2 - y_1^2})</td>
</tr>
<tr>
<td>(y_n = A_n(y_1 \cosh z_1 + x_1 \sinh z_1))</td>
<td>(y_n = 0)</td>
</tr>
<tr>
<td>(z_n = 0)</td>
<td>(z_n = z_1 + \tanh^{-1}(y_1/x_1))</td>
</tr>
</tbody>
</table>

\(A_n \leftarrow \prod_{i=1}^{N-1} \sqrt{1 - 2^{-2i}} \) (this includes the repeated iterations \(i = 4, 13, 40, ... \)). For \(N \to \infty \), \(A_n \approx 0.8 \)

- With a proper choice of the initial values \(x_1, y_1, z_1 \) and the operation mode, the following functions can be directly computed:
 - \(y_1 = 0, x_1 = 1/A_n \), rotation mode \(\rightarrow x_n = \cosh z_1, y_n = \sinh z_1 \)
 - \(z_1 = 0, x_1 = 1 \), vectoring mode \(\rightarrow z_n = \tanh^{-1}(y_1) \)
 - \(x_1 = y_1 = 1/A_n \), rotation mode \(\rightarrow x_n = y_n = \cosh z_1 + \sinh z_1 = e^{z_1} \)
 - \(x_1 = a + 1, y_1 = a - 1, z_1 = 0 \), vectoring mode \(\rightarrow z_n = \tanh^{-1}(\alpha^{-1/a + 1}) = (\ln \alpha)/2. \)
 - \(x_1 = a + 1/(4A_n^2), y_1 = a - 1/(4A_n^2), z_1 = 0 \), vectoring mode \(\rightarrow x_n = \sqrt{a} \)
RANGE OF CONVERGENCE
- The basic range of convergence \([-\theta_N, \theta_N]\), obtained by a method developed by X. Hu et al, "Expanding the Range of Convergence of the CORDIC Algorithm", results in:

| Rotation Mode: | \[|z_{in}| \leq \theta_N + \sum_{i=0}^{N} \theta_i\] |
| Vectoring Mode: | \[|a_{in}| \leq \theta_N + \sum_{i=0}^{N} \theta_i\] |

- Circular:
 \[\theta_N + \sum_{i=0}^{N} \theta_i = tan^{-1}(2^{-N}) + \sum_{i=0}^{N} tan^{-1}(2^{-i}) = 1.7433 (N \to \infty)\]

- Linear:
 \[\theta_N + \sum_{i=1}^{N} \theta_i = 2^{-N} + \sum_{i=1}^{N} 2^{-i} = 1\]

- Hyperbolic:
 \[\theta_N + \sum_{i=1}^{N} \theta_i = tanh^{-1}(2^{-N}) + \sum_{i=1}^{N} tanh^{-1}(2^{-i}) = 1.182 (N \to \infty)\]

EXPANDED CORDIC ALGORITHM
- The limited range of convergence of the original CORDIC algorithm is expanded by including iterations with negative indices. We describe the expanded circular and hyperbolic CORDIC algorithms, and the functions that we will implement.

Expanded circular CORDIC
- There are \(M\) negative iterations \(i = -M, ..., -1\) and \(N\) positive iterations \(i = 0, 1, ..., N - 1\). For sufficiently large \(N\), the values of \(x_n, y_n, z_n\) converge to:

 Rotation Mode:
 \[\begin{align*}
 x_{i+1} &= x_i + \delta_i y_i 2^{-i} \\
 y_{i+1} &= y_i - \delta_i x_i 2^{-i} \\
 z_{i+1} &= z_i + \delta_i \theta_i \\
 \theta_i &= tan^{-1}(2^{-i})
 \end{align*}\]

 Vectoring Mode:
 \[\begin{align*}
 x_{i+1} &= x_i + \delta_i y_i 2^{-i} \\
 y_{i+1} &= y_i - \delta_i x_i 2^{-i} \\
 z_{i+1} &= z_i + \delta_i \theta_i \\
 \theta_i &= tan^{-1}(2^{-i})
 \end{align*}\]

 Rotation: \(\delta_i = +1\) if \(z_i < 0\); \(-1\), otherwise
 Vectoring: \(\delta_i = +1\) if \(y_i \geq 0\); \(-1\), otherwise

- We can cover the entire domain of \(\cos/\sin\) and range of \(tan^{-1}\) with \(\theta_{\text{max}}(M) = \pi\), i.e. \(M = 2\).
- Alternatively, we can repeat the iteration \(i = 0\) two more times \((i = 0, 0, 1, 2, ..., N - 1)\) in order to get \(\theta_{\text{max}}(M) = \pi\). This is the method that optimizes hardware resources.
Expanded hyperbolic CORDIC

- This extension to the original CORDIC equations allows for the computation of hyperbolic functions, where \(i \) is the index of the iteration \((i = 1, 2, 3, \ldots) \). The following iterations must be repeated to guarantee convergence: \(i = 4, 13, 40, \ldots, k, 3k + 1 \).

\[
\begin{align*}
 \frac{x_{i+1}}{x_i} &= 1 - \delta_i (1 - 2^{-i}) \\
 \frac{y_{i+1}}{y_i} &= 1 - \delta_i (1 - 2^{-i}) \\
 z_{i+1} &= z_i + \delta_i \theta_i, \theta_i = \text{Tanh}^{-1}(1 - 2^{-i}) \\
 x_{i+1} &= x_i - \delta_i y_i 2^{-i} \\
 y_{i+1} &= y_i - \delta_i x_i 2^{-i} \\
 z_{i+1} &= z_i + \delta_i \theta_i, \theta_i = \text{Tanh}^{-1}(1 - 2^{-i})
\end{align*}
\]

- There are \(M + 1 \) negative iterations \((i = -M, \ldots, -1, 0) \) and \(N \) positive iterations \((i = 1, 2, \ldots, N) \), with repeated iterations \(4, 13, 40, \ldots, k, 3k + 1 \) to guarantee convergence. For sufficiently large \(N \), the values of \(x_n, y_n, z_n \) converge to:

<table>
<thead>
<tr>
<th>Rotation Mode</th>
<th>Vectoring Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n = A_n(x_n \text{cosh}_n + y_n \text{sinh}_n))</td>
<td>(x_n = A_n \sqrt{x_n^2 - y_n^2}, y_n = 0)</td>
</tr>
<tr>
<td>(y_n = A_n(y_n \text{cosh}_n + x_n \text{sinh}_n))</td>
<td>(z_n = z_n + \text{tanh}^{-1}(y_n/x_n))</td>
</tr>
</tbody>
</table>

\(A_n = \left(\prod_{i=-M}^{0} \sqrt{1 - (1 - 2^{-i})^2} \right) \prod_{i=1}^{N} \sqrt{1 - 2^{-2i}} \). Here, the value of \(M \) affects \(A_n \).

- As \(M \) increases, the range of convergence \([-\theta_{\max}(M), \theta_{\max}(M)]\) can be greatly enlarged. However, this comes at the expense of a larger resource consumption.

<table>
<thead>
<tr>
<th>(M)</th>
<th>coshx, sinh, e^x</th>
<th>ln x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic CORDIC</td>
<td>([-1.11820, 1.11820])</td>
<td>(0.935958)</td>
</tr>
<tr>
<td>0</td>
<td>([-2.09113, 2.09113])</td>
<td>(0.6551375)</td>
</tr>
<tr>
<td>1</td>
<td>([-3.44515, 3.44515])</td>
<td>(0.98269618)</td>
</tr>
<tr>
<td>2</td>
<td>([-5.16215, 5.16215])</td>
<td>(0.304640 \times 10^8)</td>
</tr>
<tr>
<td>3</td>
<td>([-7.23371, 7.23371])</td>
<td>(0.191920 \times 10^9)</td>
</tr>
<tr>
<td>4</td>
<td>([-9.65581, 9.65581])</td>
<td>(0.243742 \times 10^9)</td>
</tr>
<tr>
<td>5</td>
<td>([-12.42644, 12.42644])</td>
<td>(0.621539 \times 10^{10})</td>
</tr>
<tr>
<td>6</td>
<td>([-15.54462, 15.54462])</td>
<td>(0.317604 \times 10^{11})</td>
</tr>
<tr>
<td>7</td>
<td>([-19.00987, 19.00987])</td>
<td>(0.324910 \times 10^{12})</td>
</tr>
<tr>
<td>8</td>
<td>([-22.82194, 22.82194])</td>
<td>(0.665097 \times 10^{13})</td>
</tr>
<tr>
<td>9</td>
<td>([-26.98070, 26.98070])</td>
<td>(0.272357 \times 10^{13})</td>
</tr>
<tr>
<td>10</td>
<td>([-31.48609, 31.48609])</td>
<td>(0.223085 \times 10^{13})</td>
</tr>
</tbody>
</table>

Computation of trigonometric and hyperbolic functions

- The \(\cos/\sin/\tan^{-1} \) (circular) and \(\cosh/\sinh/e^x/\tanh^{-1} \) (hyperbolic) functions can be directly computed by proper selection of the operation mode and the initial values \(x_{in} = x, y_{in} = y, z_{in} = x - M \).

- For \(e^x = \cosh + \sinh \), we need \(x = 1/A_n, z = 0 \), mode = rotation.

- The functions \(\sqrt{x}, \ln x \), and \(x^y \) are computed with the hyperbolic CORDIC:

 - For \(\sqrt{x} \), we use \(x_{in} = x + 1/(4A_n^2), y_{in} = x - 1/(4A_n^2), z_{in} = 0 \), mode = vectoring.
 - For \(\ln x = 2\text{tanh}^{-1}(x - 1/x + 1) \), we use \(x = x_{in} + 1, y = x_{in} - x - 1, z = 0 \), mode = vectoring. A product by 2 is needed.

- Powering: \(x^y = e^{y \ln x} \). We first get \(x_{in} = (\ln x)/2 \), followed by \(z_{in} = 2y = y \ln x \). Then, we use \(x_{in} = y_{in} = 1/A_n, z_{in} = y \ln x, \text{mode} = \text{rotation} \) to get \(x_{in} = e^{y \ln x} = x^y \). Argument bounds of \(x^y \) ((x, y) values for which \(x^y \) converges): \(|\ln x| \leq \theta_{\max}(M) \).

- The parameter \(M \) controls the range of convergence: \([-\theta_{\max}(M), \theta_{\max}(M)]\).

- The domain of \(\ln x \) is bounded by \(\left(0, \frac{\theta_{\max}(M)^2}{2} \right) \).

- As \(M \) increases, the argument bounds of \(\cosh, \sinh, e^x, \tanh^{-1}, \sqrt{x}, \ln x \) and \(x^y \) are greatly enlarged.

ITERATIVE ARCHITECTURE (BASIC CORDIC)

- The architecture is such that the inputs and outputs have an identical bit width. We can reach an optimal number of iterations by noticing the iteration at which \(\theta_i = \text{Tanh}^{-1}(2^{-i}) \) is equal to zero due to a particular fixed-point representation.

\[n: \text{input/output bit width} \]
\[ng: \text{additional guard bits} \]
\[nr: \text{bit width of the internal registers and operators} \]
\[N: \# \text{of iterations (} i = 0, 1, \ldots, N - 1 \text{ for circular CORDIC,} i = 1, \ldots, N \text{ for linear/hyperbolic CORDIC)} \]

\(x_i, y_i, z_i \) may require more bits than the final values. A common rule of thumb is "If \(n \) bits is the desired output precision, the internal registers should have \(\left\lfloor \log_2 n \right\rfloor + \text{additional guard bits} \) at the LSB position". A more accurate procedure is to perform software simulation for a given number of iterations and find out the number of bits required for proper representation of the \(x_i, y_i, z_i \) quantities.
Circular CORDIC
- The figure below depicts the architecture that implements the circular CORDIC equations in an iterative fashion. The LUT (look-up table) stores the sets of elementary angles $\theta_i = \tan^{-1}(2^{-i})$. The process begins when a start signal is asserted. After N clock cycles, the result is obtained in the registers X, Y and Z, and a new process can be started.
- The state machine controls the load of the registers, the data that passes onto the multiplexers, the add/subtract decision for the adder/subtractors, and the count given to the barrel shifters and LUT.

Hyperbolic CORDIC
- Here the LUT holds the $\theta_i = \tanh^{-1}(2^{-i})$ values for $i = 1, 2, ..., N$. The FSM is more complex as it has to account for the repeated iterations. After $N - 1 + v$ (v: # of repeated iterations) clock cycles, the result is obtained in the registers X, Y and Z, and a new process can be started.
Linear CORDIC
- Here the LUT holds the $\theta_i = 2^{-i}$ values with $i = 1, 2, ..., N$. After $N - 1$ clock cycles, the result is obtained in the registers X, Y and Z, and a new process can be started. Note that we do not need an adder for x_i.

- Note that these architectures do not specify the numerical format we are using. We are free to use any format we desire (e.g.: fixed point, dual fixed point, floating point). The adders, barrel shifters, and LUT will change depending on the desired format. If an arithmetic unit requires more than one cycle to process its data, the FSM needs to account for this.
Example: FX Circular CORDIC with [16 14]

$ng = 4$ additional guard bits.
LUT (Look Up Table) Approach

- In computer architecture, whenever a function is to be evaluated, we usually implement the algorithm that computes that function on hardware (e.g. \(\sqrt{\cdot}, \ln, \exp \)). We can always take advantage of the specific properties of the algorithm to optimize both speed and resource utilization.
- Another option is not to compute the function values, but rather to store the values themselves in a LUT (ROM-like architecture). In this case, the value is taken directly from the memory rather than computed. For certain scenarios and under certain constraints, this idea can lead to more efficient architectures (both in speed and resource consumption).
- In a LUT, the LUT contents are hardwired. A 4-to-1 LUT can be seen as a ROM with 16 addresses, each address holding one bit. It can also be seen as a multiplexor with fixed inputs. A 4-to-1 LUT can implement any 4-input logic function.

LARGER LUTS

- \(NI \rightarrow NO \) LUT: \(NI \) input bits, \(NO \) output bits. This circuit can be thought of as a ROM with \(2^{NI} \) addresses, each address holding \(NO \) bits.
- A larger LUT can be built by building a circuit that allows for more LUT positions.
- Efficient method: A larger LUT can also be built by combining LUTs with multiplexers as shown in the figure. We can build a \(NI \rightarrow 1 \) LUT with this method.
- We can build a \(NI \rightarrow NO \) LUT using \(NO \) \(NI \rightarrow 1 \) LUTs.

You can implement any function using any desired format (e.g.: integer, fixed-point, dual fixed-point, floating point): \(y = f(x) \), where \(y \) is represented with \(NO \) bits, and \(x \) with \(NI \) bits.

The amount of resources increases linearly with the number of output bits (NO). However, the amount of resources grow exponentially with the number of input bits (NO). Thus, this approach is only efficient for small input data sizes (\(\leq 12 \) in modern FPGAs).
DISTRIBUTED ARITHMETIC

- This is a useful technique to implement inner product when one of the vectors is constant:
 \[y = \sum_{k=0}^{N-1} h[k]x[k] \]

- If the coefficients \(h[k] \) are known a priori, then the partial product term \(h[k]x[k] \) becomes a multiplication with a constant. The Distributed Arithmetic Technique takes advantage of this fact:

DISTRIBUTED ARITHMETIC – UNSIGNED INTEGER NUMBERS

- Each \(x[k] \) value is an unsigned number with \(B \) bits: \(x[k] = x_{B-1}[k]x_{B-2}[k] \ldots x_0[k] \)
 \[x[k] = \sum_{b=0}^{B-1} x_b[k] \times 2^b, x_b[k] \in \{0, 1\} \]

- where \(x_b[k] \) denotes the \(b \)th bit of \(x[k] \) (with \(B \) bits). Then:
 \[y = \sum_{k=0}^{N-1} h[k]x[k] = \sum_{k=0}^{N-1} \left(h[k] \sum_{b=0}^{B-1} x_b[k] \times 2^b \right) \]

- or
 \[y = h[0](x_{B-1}[0]2^{B-1} + \cdots + x_0[0]2^0) + h[1](x_{B-1}[1]2^{B-2} + \cdots + x_0[1]2^1) + \cdots + h[N-1](x_{B-1}[N-1]2^0 + x_0[N-1]2^0) \]

- The summation can be rewritten as follows:
 \[y = h[0](x_{B-1}[0] + h[1]x_{B-1}[1] + \cdots + h[N-1]x_{B-1}[N-1]) \times 2^{B-1} \]

- or
 \[y = h[0]x_0[0] + h[1]x_1[1] + \cdots + h[N-1]x_0[N-1] \times 2^0 \]

- In general:
 \[f(\vec{h}, \vec{x}_b) = \sum_{k=0}^{N-1} h[k]x_b[k], \vec{h} = [h[0] h[1] \ldots h[N-1]], \vec{x}_b = [x_b[0] x_b[1] \ldots x_b[N-1]] \]

- Preferred implementation of \(f(\vec{h}, \vec{x}_b) \): A \(2^N \)-word LUT preprogrammed to accept an \(N \)-bit input vector \(\vec{x}_b \) and output \(f(\vec{h}, \vec{x}_b) \).

- To get \(y \), each \(f(\vec{h}, \vec{x}_b) \) is weighted by \(2^b \) and all the resulting values are added up.

DISTRIBUTED ARITHMETIC – SIGNED INTEGER NUMBERS

- Each \(x[k] \) value is an signed number with \(B + 1 \) bits: \(x[k] = x_{B}[k]x_{B-1}[k]x_{B-2}[k] \ldots x_0[k] \)
 \[x[k] = -2^B x_0[k] + \sum_{b=0}^{B-1} x_b[k] \times 2^b, x_b[k] \in \{0, 1\} \]

- where \(x_b[k] \) denotes the \(b \)th bit of \(x[k] \) (with \(B \) + 1 bits). Then:
 \[y = \sum_{k=0}^{N-1} h[k]x[k] = \sum_{k=0}^{N-1} \left(h[k] \times (-2^B x_0[k] + \sum_{b=0}^{B-1} x_b[k] \times 2^b) \right) \]

- Using a similar procedure as in the unsigned case, the inner product can be rewritten as:
 \[y = -2^B \times \sum_{k=0}^{N-1} x_0[k] + \sum_{b=0}^{B-1} \left(h[k] \times \sum_{b=0}^{B-1} x_b[k] \times 2^b \right) = -2^B \times f(\vec{h}, \vec{x}_b) + \sum_{b=0}^{B-1} (2^b \times f(\vec{h}, \vec{x}_b)) \]

- or
 \[f(\vec{h}, \vec{x}_b) = \sum_{k=0}^{N-1} h[k]x_b[k], \vec{h} = [h[0] h[1] \ldots h[N-1]], \vec{x}_b = [x_b[0] x_b[1] \ldots x_b[N-1]] \]

- Preferred implementation of \(f(\vec{h}, \vec{x}_b) \): A \(2^N \)-word LUT preprogrammed to accept an \(N \)-bit input vector \(\vec{x}_b \) and output \(f(\vec{h}, \vec{x}_b) \).

- To get \(y \), each \(f(\vec{h}, \vec{x}_b) \) is weighted by \(2^b \) and all of the resulting values are added up. Note that when \(b = B \), we change the sign of the operand. Alternatively, we can modify the LUT for \(b = B \), so that it outputs \(-f(\vec{h}, \vec{x}_b)\). To get \(y \), each \(f(\vec{h}, \vec{x}_b) \) is weighted by \(2^b \) and all of the resulting values are added up.
HARDWARE IMPLEMENTATION

i) **Iterative Implementation:** We make use of a shift-adder as shown in the figure.
- The vector \(\tilde{x}_b \) \(b = 0,1,...B \) is fed into the \(2^N \)-word LUT at each clock cycle.
- Instead of shifting each intermediate output value \(f(\vec{h}, \tilde{x}_b) \) by \(b \) bits (which demands an expensive barrel shifter), it is more appropriate to shift the accumulator content itself in each iteration one bit to the right.
- The adder unit includes a add/sub control so that when \(b = B \), it will subtract the \(f(\vec{h}, \tilde{x}_b) \) from the current result.
- This shift-adder implementation requires the use of \(N \) shift registers of \(B+1 \) length.
- Notice that for \(B = 1 \), we have: \(f(\vec{h}, \tilde{x}_0) \times 2^{-1} \). For \(B = 2 \), we have \(f(\vec{h}, \tilde{x}_0) \times 2^{-2} + f(\vec{h}, \tilde{x}_1) \times 2^{-1} - f(\vec{h}, \tilde{x}_2) \).
- For \(B = 2 \), we adjust the result at the end by multiplying everything by \(2^2 \): \(f(\vec{h}, \tilde{x}_0) + f(\vec{h}, \tilde{x}_1) \times 2^1 - f(\vec{h}, \tilde{x}_2) \times 2^2 \). This requires no extra hardware.
- A simpler option is to input the vector \(\tilde{x}_b \) starting from \(b = B, B-1, ... , 0 \).

ii) **Fully parallel implementation:** We use an array of \(2^N \) word LUTs as shown in the figure.
- There are no shift registers here.
- Each of the vectors \(\tilde{x}_b \) is fed to a \(2^N \)-word LUT. As a result, we use \(B+1 \) \(2^N \)-word LUTs.
- The output of each \(2^N \)-word LUT is multiplied by its correspondent \(2^b \).
- To account for the negative sign in \(f(\vec{h}, \tilde{x}_b) \), we multiply it by \(-2^b \). Another option is to modify the LUT so that when \(b = B \) it outputs \(-f(\vec{h}, \tilde{x}_b) \).
- All the LUT outputs are weighted by \(2^b \) and added into a final result.

MODIFIED DA IMPLEMENTATION

- The LUT implementation becomes prohibitively expensive when \(N \) is large (if \(N = 32 \) → the LUT has \(2^{32} \) words = \(4G \) words!!)). A solution is to divide the inner product into inner product with \(L \) terms, i.e. we have \(N/L \) inner products of \(L \) terms, as follows:

\[
y = \sum_{k=0}^{L-1} h[k]x[k] + \sum_{k=L}^{2L-1} h[k]x[k] + \sum_{k=2L}^{3L-1} h[k]x[k] + \ldots + \sum_{k=(L-1)N}^{N-1} h[k]x[k]
\]
- Each of the \(N/L \) summations is transformed to DA form, and then computed in parallel. Finally, we add up all the resulting \(N/L \) values. With this in mind, we reformulate the 2 basic implementations:

i) **Iterative Implementation:** Here we use \(N/L \) \(2^L \)-word LUTs. A vector \(\tilde{x}_b \) \(0 \leq b \leq B \) is fed into the LUT at each clock cycle.

- All LUTs outputs are accumulated; the final result goes through a shift-adder unit. The table illustrates the resource savings.

<table>
<thead>
<tr>
<th>Implementation</th>
<th>LUT Size</th>
<th>Total space required</th>
</tr>
</thead>
<tbody>
<tr>
<td>No division in filter blocks</td>
<td>(2^N) words</td>
<td>(2^N) words</td>
</tr>
<tr>
<td>Division into (N/L) filter blocks</td>
<td>(2^L) words</td>
<td>(2^L \times (N/L)) words</td>
</tr>
</tbody>
</table>

As an example, consider \(N = 32, L = 4 \). Then the original DA uses \(2^{32} = 4G \) words, while the Modified DA uses \(2^4 \times \frac{32}{4} = 128\) words. This is a vast improvement at the expense of one extra adder tree.

ii) **Fully Parallel Implementation:** The output of each of the \(N/L \) filter blocks is computed as in the case of Figure 6. The only difference is that the \(\tilde{x}_b \) vectors are of \(L \) bits; each of these vectors is fed into a \(2^L \)-word LUT (we use \(B+1 \) \(2^L \)-word LUTs per filter block). Finally the \(N/L \) filter block outputs are added in parallel. The following table illustrates the resource savings.

<table>
<thead>
<tr>
<th>Implementation</th>
<th>LUT Size</th>
<th>Total space required</th>
</tr>
</thead>
<tbody>
<tr>
<td>No division in filter blocks</td>
<td>(2^N \times (B+1)) words</td>
<td>(2^N \times (B+1)) words</td>
</tr>
<tr>
<td>Division into (N/L) filter blocks</td>
<td>(2^L \times (B+1)) words</td>
<td>(2^L \times (B+1) \times (N/L)) words</td>
</tr>
</tbody>
</table>

Instructor: Daniel Llamocca
As an example, consider $N = 32$, $L = 4$, $B = 11$. Then the original DA uses $2^{32} \times (11 + 1) = 486\text{ words}$, while the Modified DA uses $2^{32} \times (11 + 1) \times \frac{32}{4} = 1536\text{ words}$. This is vast improvement.

- **Fixed-point considerations:** The format of every stage differs from that of the input.
- **Applications:** non-symmetric, symmetric, anti-symmetric FIR filters, DCT, HEVC Transform.

Fully Parallel Modified DA Architecture