Homework 3
(Due date: November 2nd @ 5:30 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (17 pts)

- Complete the timing diagram of the circuit shown below. (5 pts)

- Complete the timing diagram for the flip flop and the latch shown below: (7 pts)

- Complete the timing diagram of the circuit whose VHDL description is shown below: (5 pts)

library ieee;
use ieee.std_logic_1164.all;

entity circ is
 port (prn, x, clk: in std_logic;
 q: out std_logic);
end circ;

architecture a of circ is
 signal qt: std_logic;
begin
 process (prn, clk, x)
 begin
 if prn = '0' then
 qt <= '1';
 elsif (clk'event and clk = '0') then
 if x = '0' then
 qt <= not(qt);
 end if;
 end if;
 end process;
 q <= qt;
end a;

library ieee;
use ieee.std_logic_1164.all;

entity circ is
 port (prn, x, clk: in std_logic;
 q: out std_logic);
end circ;

architecture a of circ is
 signal qt: std_logic;
begin
 process (prn, clk, x)
 begin
 if prn = '0' then
 qt <= '1';
 elsif (clk'event and clk = '0') then
 if x = '0' then
 qt <= not(qt);
 end if;
 end if;
 end process;
 q <= qt;
end a;
PROBLEM 2 (35 pts)

- Complete the timing diagram of the circuit shown below: (10 pts)

- Complete the timing diagram of the circuits shown below: (15 pts)

- Complete the timing diagram of the circuit shown below. $Q = Q_3Q_2Q_1Q_0$ (10 pts)
PROBLEM 3 (18 pts)

- Given the following circuit, complete the timing diagram (signals DO and DATA).

The LUT 6-to-6 implements the following function: \(OLU T = \lceil \sqrt{ILUT} \rceil \), where \(ILUT \) is a 6-bit unsigned number.

For example \(ILUT = 35 \) (1000112) \(\rightarrow OLU T = \lceil \sqrt{35} \rceil = 6 \) (0001102)

PROBLEM 4 (30 pts)

- The following circuit is a 4-bit parallel/serial load shift register with enable input.

Shifting operation: \(s_l = 0 \). Parallel load: \(s_l = 1 \). Note that \(Q = Q_3Q_2Q_1Q_0 \), \(D = D_3D_2D_1D_0 \)

✓ Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will interconnect the flip flops and MUXes). Provide a printout. (10 pts)

✓ Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your circuit (Behavioral Simulation). The clock frequency must be 50 MHz with 50% duty cycle. Provide a printout. (20 pts)