Solutions - Homework 3

(Due date: October 27th @ 5:30 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (25 pts)

a) Complete the timing diagram of the circuit shown below. (5 pts)

b) Complete the timing diagram of the circuit whose VHDL description is shown below: (5 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity circ is
  port ( prn, x, clk: in std_logic;
         q: out std_logic);
end circ;

architecture a of circ is
  signal qt: std_logic;
begin
  process (prn, clk, x)
  begin
    if prn = '0' then
      q <= '1';
    elsif (clk'event and clk = '0') then
      if x = '1' then
        qt <= not(qt);
      end if;
    end if;
  end process;
  q <= qt;
end a;
```

c) Complete the timing diagram of the circuits shown below: (15 pts)
PROBLEM 2 (25 PTS)

- Complete the timing diagram of the circuit shown below: (10 pts)

- Complete the VHDL description of the synchronous sequential circuit whose truth table is shown below: (5 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity my_ff is
  port (a, b, c: in std_logic;
        clrn, clk: in std_logic;
        q: out std_logic);
end my_ff;

architecture a of my_ff is
  signal qt: std_logic;
  begin
    process (clrn, clk, a, b, c)
    begin
      if clrn = '0' then qt <= '0';
      elsif (clk'event and clk='1') then
        if (a = '0' and b = '1') then
          qt <= not (qt);
        elsif (a = '1' and b = '0') then
          qt <= not (c);
        elsif (a = '1' and b = '1') then
          qt <= b;
        end if;
      end if;
    end process;
    q <= qt;
  end a;
```

- Complete the timing diagram of the circuit shown below. \(Q = Q_3Q_2Q_1Q_0 \) (10 pts)
Problem 3 (20 pts)

- Given the following circuit, complete the timing diagram (signals \(DO\) and \(DATA\)).
- The LUT 6-to-6 implements the following function: \(OLUT = \lceil ILUT^{0.95} \rceil\), where \(ILUT\) is an unsigned number.
- For example, \(ILUT = 35 (100111_2) \rightarrow OLUT = \lceil 35^{0.95} \rceil = 30 (011110_2)\)

\[
\begin{align*}
ILUT = 21 (010101_2) & \rightarrow OLUT = \lceil 21^{0.95} \rceil = 19 (010011_2) \\
ILUT = 43 (101011_2) & \rightarrow OLUT = \lceil 43^{0.95} \rceil = 36 (100100_2) \\
ILUT = 19 (010011_2) & \rightarrow OLUT = \lceil 19^{0.95} \rceil = 17 (010001_2)
\end{align*}
\]

Problem 4 (30 pts)

- The following circuit is a 4-bit parallel/serial load shift register with enable input.
- Shifting operation: \(s_l = 0\). Parallel load: \(s_l = 1\). Note that \(Q = Q_3Q_2Q_1Q_0, D = D_3D_2D_1D_0\)
- ✓ Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will interconnect the flip flops and MUXes). Provide a printout. (10 pts)
- ✓ Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your circuit (Timing Simulation). The clock frequency must be 50 MHz with 50% duty cycle. Provide a printout. (20 pts)
VHDL Code: Top File

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity my_st_shiftreg is
    generic (N: INTEGER := 4;
              DIR: STRING := "LEFT"; -- RIGHT/LEFT
    port (D: in std_logic_vector (N-1 downto 0);
          resetn, clock, din, E, s_l: in std_logic;
          Q: out std_logic_vector (N-1 downto 0));
end my_st_shiftreg;

architecture structure of my_st_shiftreg is
    component dffe
        port ( d : in STD_LOGIC;
               clrn, prn, clk, ena: in std_logic;
               q : out STD_LOGIC);
    end component;

    component mux2to1
        port (a, b, sel : in std_logic;
              y : out std_logic);
    end component;

    signal ds, md, Qt: std_logic_vector (N-1 downto 0);

    begin
    a0: assert (DIR = "LEFT" or DIR = "RIGHT")
        report "DIR can only be LEFT or RIGHT"
        severity error;

    rr: if DIR = "RIGHT" generate
        ds(N-1) <= din;
        ds(N-2 downto 0) <= Qt(N-1 downto 1);
    end generate;

    rl: if DIR = "LEFT" generate
        ds(0) <= din;
        ds(N-1 downto 1) <= Qt(N-2 downto 0);
    end generate;

    ti: for i in N-1 downto 0 generate
        fi: dffe port map (d => md(i), clrn => resetn, prn => '1', clk => clock, ena => E, q => Qt(i));
        mi: mux2to1 port map (a => ds(i), b => D(i), sel => s_l, y => md(i));
    end generate;

    Q <= Qt;
end structure;

VHDL Code: D-Type flip flop

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dffe is
 port (d : in STD_LOGIC;
 clrn, prn, clk, ena: in std_logic;
 q : out STD_LOGIC);
end dffe;

architecture behaviour of dffe is
begin
 process (clk, ena, prn, clrn)
 begin
 if clrn = '0' then q <= '0';
 elsif prn = '0' then q <= '1';
 elsif (clk'event and clk='1') then
 if ena = '1' then q <= d; end if;
 end if;
 end process;
end behaviour;

VHDL Code: MUX 2-to-1

```vhdl
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity mux2to1 is
    port (a, b, sel: in std_logic;
          y: out std_logic);
end mux2to1;

architecture structure of mux2to1 is
begin
    with sel select
        y <= a when '0',
              b when others;
end structure;

```
VHDL Testbench:

```vhdl
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY tb_my_st_shiftreg IS
generic (N: INTEGER:= 4);
END tb_my_st_shiftreg;

ARCHITECTURE behavior OF tb_my_st_shiftreg IS
COMPONENT my_st_shiftreg
PORT(
    D : IN  std_logic_vector(N-1 downto 0);
    resetn, clock, din : IN  std_logic;
    E, s_l : IN  std_logic;
    Q : OUT  std_logic_vector(N-1 downto 0));
END COMPONENT;

--Inputs
signal D : std_logic_vector(N-1 downto 0) := (others => '0');
signal resetn : std_logic := '0';
signal clock : std_logic := '0';
signal din : std_logic := '0';
signal E : std_logic := '0';
signal s_l : std_logic := '0';

--Outputs
signal Q : std_logic_vector(N-1 downto 0);

-- Clock period definitions
constant T : time := 20 ns;
BEGIN
    -- Instantiate the Unit Under Test (UUT)
    uut: my_st_shiftreg PORT MAP (D => D, resetn => resetn, clock => clock, din => din,
    E => E, s_l => s_l, Q => Q);

    -- Clock process definitions
    clock_process: process
        begin
            clock <= '0'; wait for T/2;
            clock <= '1'; wait for T/2;
        end process;

    -- Stimulus process
    stim_proc: process
        begin
            D <= "1011"; resetn <= '0'; wait for 100 ns;
            resetn <= '0'; wait for T*2;
            resetn <= '1';
            D <= "1011"; din <= '0'; E <= '1'; s_l <= '0'; wait for T;
            D <= "1011"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;
            D <= "1010"; din <= '0'; E <= '1'; s_l <= '1'; wait for T;
            D <= "1010"; din <= '1'; E <= '1'; s_l <= '0'; wait for T;
            D <= "1010"; din <= '1'; E <= '1'; s_l <= '1'; wait for T;
            D <= "1010"; din <= '0'; E <= '0'; s_l <= '0'; wait for T;
            D <= "1100"; din <= '1'; E <= '0'; s_l <= '1'; wait for T;
            D <= "1100"; din <= '0'; E <= '0'; s_l <= '0'; wait for T;
            D <= "1100"; din <= '0'; E <= '0'; s_l <= '1'; wait for T;
            D <= "1100"; din <= '1'; E <= '0'; s_l <= '0'; wait for T;
        end process;
END;
```