Solutions - Final Exam

(December 8th @ 7:00 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (12 pts)
- Given the following circuit, complete the timing diagram.
 The LUT 6-to-6 implements the following function: OLUT = ceil(sqrt(ILUT)), where ILUT is a 6-bit unsigned number.
 For example ILUT = 35 (100011₂) → OLUT = ceil(sqrt(35)) = 6 (000110₂)

PROBLEM 2 (12 pts)
- Complete the timing diagram of the following circuit. G = G₃G₂G₁G₀ = 1001, Q = Q₃Q₂Q₁Q₀
Problem 3 (22 pts)

- Sequence detector: The machine has to generate \(z = 1 \) when it detects the sequence 1011. Once the sequence is detected, the circuit looks for a new sequence.
- The signal \(E \) is an input enable: It validates the input \(x \), i.e., if \(E = 1 \), \(x \) is valid, otherwise \(x \) is not valid.

State Diagram, State Table, and Excitation Table:

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00,01,10/0</td>
<td>00,01,11/0</td>
<td>00,01,11/0</td>
</tr>
<tr>
<td>00,01,10/0</td>
<td>00,01,10/0</td>
<td>00,01,10/0</td>
</tr>
</tbody>
</table>

Ex/z

- **resetn** = 0
- **S1**: \(Q = 00 \)
- **S2**: \(Q = 01 \)
- **S3**: \(Q = 10 \)
- **S4**: \(Q = 11 \)

State Assignment:

- \(S1: Q = 00 \)
- \(S2: Q = 01 \)
- \(S3: Q = 10 \)
- \(S4: Q = 11 \)

This is a Mealy Machine. The output \(z \) depends on the input as well as on the present state.

Excitation equations, minimization, and circuit implementation:

- \(Q_1(t+1) = EQ_1 + EQ_0 + xQ_1Q_0 \)
- \(Q_0(t+1) = EQ_0 + EQ_0 + xQ_1Q_0 \)
- \(z = EQ_1Q_0 \)

State Diagram: (any representation), State Table, and the Excitation Table of this circuit with inputs \(E \) and \(x \) and output \(z \). Is this a Mealy or a Moore machine? Why? (15 pts)

Provide the excitation equations (simplify your circuit using K-maps or the Quine-McCluskey algorithm) (4 pts)

Sketch the circuit. (3 pts)
PROBLEM 4 (20 PTS)

- Complete the timing diagram of the circuit shown below: (8 pts)

- Provide the State Diagram (any representation), the Excitation Table, and the Excitation equations of the following Finite State Machine: (12 pts)

\[Q_1(t+1) = (Q_1 + Q_0) \oplus w \]
\[Q_0(t+1) = Q_1Q_0w \]
\[z = wQ_1Q_0 \]

State Assignment:
S1: Q=00 S2: Q=01
S3: Q=10 S4: Q=11

<table>
<thead>
<tr>
<th>PRESENT STATE</th>
<th>NEXTSTATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w) (Q_1Q_0(t))</td>
<td>(Q_1Q_0(t+1)) (z)</td>
</tr>
<tr>
<td>0 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0 0 0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>1 1 1</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 1 1</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1 0 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESENT STATE</th>
<th>NEXT STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w)</td>
<td>(Q_0)</td>
</tr>
<tr>
<td>0</td>
<td>S1</td>
</tr>
<tr>
<td>0</td>
<td>S2</td>
</tr>
<tr>
<td>0</td>
<td>S3</td>
</tr>
<tr>
<td>0</td>
<td>S4</td>
</tr>
<tr>
<td>1</td>
<td>S1</td>
</tr>
<tr>
<td>1</td>
<td>S2</td>
</tr>
<tr>
<td>1</td>
<td>S3</td>
</tr>
<tr>
<td>1</td>
<td>S4</td>
</tr>
</tbody>
</table>

\[\text{resetn} = 0 \]
PROBLEM 5 (16 PTS)
- Draw the State Diagram (in ASM form) of the FSM whose VHDL description is shown below. Is it a Mealy or a Moore FSM?
- Complete the Timing Diagram.

library ieee;
use ieee.std_logic_1164.all;

entity circ is
 port (clk, resetn: in std_logic;
 r, p, q: in std_logic;
 x, w, z: out std_logic);
end circ;

architecture behavioral of circ is
 type state is (S1, S2, S3);
 signal y: state;
begin
 Transitions: process (resetn, clk, r, p, q)
 begin
 if resetn = '0' then
 y <= S1;
 elsif (clk'event and clk = '1') then
 case y is
 when S1 =>
 if r = '1' then
 y <= S2;
 else
 if p = '1' then
 y <= S3;
 else
 y <= S1;
 end if;
 end if;
 when S2 =>
 if p = '1' then
 y <= S1;
 else
 y <= S3;
 end if;
 when S3 =>
 if q = '1' then
 y <= S3;
 else
 y <= S2;
 end if;
 end case;
 end if;
 end process;
 Outputs: process (y, r, p, q)
 begin
 x <= '0'; w <= '0'; z <= '0';
 case y is
 when S1 =>
 if r = '0' then
 if p = '0' then
 w <= '1'; x <= '1';
 end if;
 end if;
 when S2 =>
 if q = '0' then
 x <= '1';
 if p = '0' then
 z <= '1';
 end if;
 when S3 =>
 if q = '0' then
 x <= '1';
 end case;
 end process;
 end behavioral;

This is a Mealy Machine. The outputs \(x, w, z\) depend on the input as well as on the present state.

This is a Mealy Machine. The outputs \(x, w, z\) depend on the input as well as on the present state.

Problem 6 (18 pts)

- Complete the timing diagram of the following digital circuit that includes an FSM (in ASM form) and a datapath circuit.

![Timing Diagram](image-url)