Homework 3
(Due date: October 27th @ 5:30 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (25 pts)

a) Complete the timing diagram of the circuit shown below. (5 pts)

![Timing Diagram](image)

b) Complete the timing diagram of the circuit whose VHDL description is shown below: (5 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity circ is
  port ( prn, x, clk: in std_logic;
         q: out std_logic);
end circ;

architecture a of circ is
  signal qt: std_logic;
begin
  process (prn, clk, x)
  begin
    if prn = '0' then
      q <= '1';
    elsif (clk'event and clk = '0') then
      if x = '1' then
        qt <= not(qt);
      end if;
    end if;
  end process;
  q <= qt;
end a;
```

![Timing Diagram](image)

c) Complete the timing diagram of the circuits shown below: (15 pts)

![Timing Diagram](image)
PROBLEM 2 (25 PTS)

- Complete the timing diagram of the circuit shown below: (10 pts)

![Full Adder Circuit Diagram]

- Complete the VHDL description of the synchronous sequential circuit whose truth table is shown below: (5 pts)

```
library ieee;
use ieee.std_logic_1164.all;

entity my_ff is
  port (a, b, c: in std_logic;
        clrn, clk: in std_logic;
        q: out std_logic);
end my_ff;

architecture a of my_ff is
begin
  -- ???
end a;
```

- Complete the timing diagram of the circuit shown below. \(Q = Q_3Q_2Q_1Q_0 \) (10 pts)

![Sequential Circuit Diagram]
Problem 3 (20 pts)
- Given the following circuit, complete the timing diagram (signals DO and DATA).
 The LUT 6-to-6 implements the following function: \(O_{LUT} = \lceil I_{LUT}^{0.95} \rceil \), where \(I_{LUT} \) is an unsigned number.
 For example \(I_{LUT} = 35 (100011_2) \rightarrow O_{LUT} = \lceil 35^{0.95} \rceil = 30 (011110_2) \)

Problem 4 (30 pts)
- The following circuit is a 4-bit parallel/serial load shift register with enable input.
 Shifting operation: \(s_l = 0 \). Parallel load: \(s_l = 1 \). Note that \(Q = Q_3Q_2Q_1Q_0, D = D_3D_2D_1D_0 \)
 ✓ Write a structural VHDL code. You MUST create a file for: i) flip flop, ii) MUX 2-to-1, and iii) top file (where you will interconnect the flip flops and MUXes). Provide a printout. (10 pts)
 ✓ Write a VHDL testbench according to the timing diagram shown below. Complete the timing diagram by simulating your circuit (Timing Simulation). The clock frequency must be 50 MHz with 50% duty cycle. Provide a printout. (20 pts)