Homework 1
(Due date: September 15th @ 5:30 pm)
Presentation and clarity are very important!

Problem 1 (25 pts)

a) Simplify the following functions using ONLY Boolean Algebra Theorems. For each resulting simplified function, sketch the logic circuit using AND, OR, XOR, and NOT gates. (12 pts)

- $F(X,Y,Z) = \prod(M_1,M_2,M_4,M_6)$
- $F = (X \oplus Y)Z + XYZ$

b) Using ONLY Boolean Algebra Theorems, determine whether or not the following expression is valid, i.e., whether the left- and right-hand sides represent the same function: (5 pts)

$$x_1x_2 + x_2x_3 + x_2x_3 = (x_1 + x_2 + x_3)(x_1 + x_2 + x_3)(x_1 + x_2 + x_3)$$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>f_1</th>
<th>f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Problem 2 (15 pts)

a) The following circuit has the following logic function: $f = \overline{sa} + sb$.

- Complete the truth table of the circuit, and sketch the logic circuit using ONLY 2-input NAND gates. (5 pts)

b) The circuit on the right can be used to realize various different functions. (10 pts)

- For example, the following selection of inputs produce the function: $g = x_1x_2 + x_2x_3$. Demonstrate that this is the case.

<table>
<thead>
<tr>
<th>$in1$</th>
<th>$in2$</th>
<th>$in3$</th>
<th>$in4$</th>
<th>$in5$</th>
<th>$in6$</th>
<th>$in7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>x_1</td>
<td>0</td>
<td>1</td>
<td>x_2</td>
<td>x_1</td>
</tr>
</tbody>
</table>

- Given the following inputs, provide the resulting function g (minimize the function).

<table>
<thead>
<tr>
<th>x_1</th>
<th>$in2$</th>
<th>$in3$</th>
<th>$in4$</th>
<th>$in5$</th>
<th>$in6$</th>
<th>$in7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>x_3</td>
<td>1</td>
<td>0</td>
<td>x_1</td>
<td>x_2</td>
</tr>
</tbody>
</table>

Problem 3 (12 pts)

- Design a circuit (simplify your circuit) that verifies the logical operation of a 3-input NOR gate. $f = '1'$ (LED ON) if the NOR gate does NOT work properly. Assumption: when the NOR gate is not working, it generates 1's instead of 0's and vice versa.
Problem 4 (20 pts)

a) Complete the timing diagram of the logic circuit whose VHDL description is shown below: (6 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity circ is
    port ( a, b, c: in std_logic;
           f: out std_logic);
end circ;

architecture st of circ is
    signal x, y: std_logic;
begin
    x <= a xor b;
    y <= x nor c;
    f <= y nand (not b);
end st;
```

b) The following is the timing diagram of a logic circuit with 3 inputs. Sketch the logic circuit that generates this waveform. Then, complete the VHDL code. (8 pts)

```vhdl
library ieee;
use ieee.std_logic_1164.all;

entity wav is
    port ( a, b, c: in std_logic;
           f: out std_logic);
end wav;

architecture st of wav is
begin
    -- ???
end st;
```

c) Complete the timing diagram of the following circuit: (6 pts)

PROBLEM 5 (28 PTS)

- A numeric keypad produces a 4-bit code as shown below. We want to design a logic circuit that converts each 4-bit code to a 7-segment code, where each segment is an LED: A LED is ON if it is given a logic '1'. A LED is OFF if it is given a logic '0'.

- Complete the truth table for each output \((a, b, c, d, e, f, g)\).
- Provide the simplified expression for each output \((a, b, c, d, e, f, g)\). Use Karnaugh maps for \(c, d, e, f, g\) and the Quine-McCluskey algorithm for \(a, b\). Note that it is safe to assume that the codes 1100 to 1111 will not be produced by the keypad.

\[
\begin{array}{cccccc}
X & Y & Z & W & a & b \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 & 1 \\
4 & 0 & 1 & 0 & 0 & 0 \\
5 & 0 & 1 & 0 & 0 & 1 \\
6 & 0 & 1 & 1 & 0 & 0 \\
7 & 0 & 1 & 1 & 0 & 1 \\
8 & 1 & 0 & 0 & 0 & 0 \\
9 & 1 & 0 & 0 & 0 & 1 \\
P & 1 & 0 & 1 & 0 & 1 \\
H & 1 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 & 4 & 5 \\
11110011 \\
11110111 \\
6 & 7 & 8 & 9 & P & H \\
6 & 7 & 8 & 9 & P & H \\
11110111 \\
11111111 \\
\end{array}
\]