Final Exam
(December 8th @ 7:00 pm)
Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (12 pts)
- Given the following circuit, complete the timing diagram.
The LUT 6-to-6 implements the following function: \(OLUT = \lceil sqrt(ILUT) \rceil \), where \(ILUT \) is a 6-bit unsigned number.
For example \(ILUT = 35 (100011_2) \rightarrow OLUT = \lceil sqrt(35) \rceil = 6 (000110_2) \)

![Timing Diagram 1](image1)

PROBLEM 2 (12 pts)
- Complete the timing diagram of the following circuit. \(G = G_3G_1G_2G_0 = 1001, Q = Q_3Q_2Q_1Q_0 \)

![Timing Diagram 2](image2)
Problem 3 (22 pts)

- Sequence detector: The machine has to generate \(z = 1 \) when it detects the sequence 1011. Once the sequence is detected, the circuit looks for a new sequence.
- The signal \(E \) is an input enable: It validates the input \(x \), i.e., if \(E = 1 \), \(x \) is valid, otherwise \(x \) is not valid.

\[
\begin{array}{c|ccc}
E & x & z \\
--- & -- & -- \\
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

- Draw the State Diagram (any representation), State Table, and the Excitation Table of this circuit with inputs \(E \) and \(x \) and output \(z \). Is this a Mealy or a Moore machine? Why? (15 pts)
- Provide the excitation equations (simplify your circuit using K-maps or the Quine-McCluskey algorithm) (4 pts)
- Sketch the circuit. (3 pts)

Problem 4 (20 pts)

- Complete the timing diagram of the circuit shown below: (8 pts)

- Provide the State Diagram (any representation), the Excitation Table, and the Excitation equations of the following Finite State Machine: (12 pts)
PROBLEM 5 (16 PTS)

- Draw the State Diagram (in ASM form) of the FSM whose VHDL description in shown below. Is it a Mealy or a Moore FSM?
- Complete the Timing Diagram.

library ieee;
use ieee.std_logic_1164.all;

entity circ is
port (clk, resetn: in std_logic;
 r, p, q: in std_logic;
 x, w, z: out std_logic);
end circ;

architecture behavioral of circ is
 type state is (S1, S2, S3);
 signal y: state;
begin
 Transitions: process (resetn, clk, r, p, q)
 begin
 if resetn = '0' then
 y <= S1;
 elsif (clk'event and clk = '1') then
 case y is
 when S1 =>
 if r = '1' then
 y <= S2;
 else
 if p = '1' then
 y <= S3;
 else y <= S1; end if;
 end if;
 when S2 =>
 if p = '1' then
 y <= S1; else y <= S3; end if;
 when S3 =>
 if q = '1' then
 y <= S3; else y <= S2; end if;
 end case;
 end if;
 end process;

 Outputs: process (y, r, p, q)
 begin
 x <= '0'; w <= '0'; z <= '0';
 case y is
 when S1 =>
 if r = '0' then
 if p = '0' then
 w <= '1'; x <= '1';
 end if;
 end if;
 when S2 =>
 if q = '0' then x <= '1'; end if;
 if p = '0' then z <= '1'; end if;
 when S3 =>
 if q = '0' then x <= '1'; end if;
 end case;
 end process;
end behavioral;
PROBLEM 6 (18 PTS)

- Complete the timing diagram of the following digital circuit that includes an FSM (in ASM form) and a datapath circuit.