Digital Alarm Clock

Matthew Screws, Binh Ton, Adam Schrader
Electrical and Computer Engineering Department
School of Engineering and Computer Science
Oakland University, Rochester, Mi
ECE 470/570 Fall 2014 - Computer-Based System Desig
Professor Daniel Llamocca
mdscrews@oakland.edu, bgton@oakland.edu, arschraki@ad.edu

Oakland

UNIVERSITY

l. ABSTRACT

The final project consists of a digital time cloekh sleep
alarm capabilities. This device is made using thHeSH2
Dragon12-Plus2 in communication with an Arduino Uno
with Sparkfun’s MP3 Shield connected. The utilizatiof

the Arduino platform was to gain access to comnyunit
created library functionality for connection with
Sparkfun’s MP3 Shield. The MP3 Shield allows an MP3
sound file to play as the alarm. The overall puepasd
functionality of the project is within today’s sepf a
modern digital alarm clock device and is the dmyvin
decision for implementing this system on the HCS12
Dragon12-Plus2 microcontroller. The main contrdlef

the Dragonl2-Plus2 and Arduino Uno boards have been
programmed by using Freescale’s CodeWarrior and
Arduino’s Sketch Pad Compilers, respectively.

Il. INTRODUCTION

Our desire to utilize all the skills acquired iretlclass
made us want to make something that we thoughtdnvoeil
of interesting and applicable to our daily lives such we
settled on making a fully functional and programieab
alarm clock. This consists of a digital time clogih an
MP3 music file as the output for alarm capabilities

We are using the timer module of the Dragon12 Bherd

to construct the real-time clock. The time is dised
utilizing the four 7-segment displays. Ante-meridiand
post-meridian are shown using the Dragon12-Plus®B RG
LED. Use of the HEX keypad is the way the userrfates
with the clock functionalities. Keys on the HEX kad
have been defined and allow the user to interfaith &
menu displayed on the LCD module connected to the
Dragonl12-Plus2 board. Menu options range from core
clock functionality like setting the current tims aell as

the alarm time. These options are reflected onLiG®
module. For the actual alarm we are using an Awidno
with a MP3 shield. This is connected via USB and
communicates serially using SCI.

II. METHODOLOGY

A. Clock

The clock has been designed around the use of utou
compare timer module set to trigger an interrupérgv
250ms. This is accomplished by using a prescalég8fin
the timer module creating a timer clock that rurts a
187.5KHz and triggers an interrupt every 46,875cklo
cycles. Once in the interrupt, a couple of “ifaments
are used to create 1 minute delays. Once a minate h
passed, the variable named “min” is incrementecbby

and the delay counters “mcount” and “ms250_count” t
zero to prepare them for the next “minute” count.

Using the RTI module, a real time interrupt wasntiised

to take the “min” variable from the above interrigd
adjust the remaining digits of the clock to cor@p to a
time of day. This interrupt is triggered every ¥nh# and
works by also using a series of “if” statementfieAten
minutes have passed, this interrupt will incremtet the
variable “tmin” to keep track of each set of temutes and
reset the “min” variable back to zero. Once sixtiyumes
have passed, the variable “hr” is incremented ahitevthe
previous two variable are again reset to zero. st of
the “if” statements are used to control the houking
sure that the hours and tens of hours digits adljust
properly until twelve is reached and then resatrie. The
RTI interrupt is also responsible for changing stetus of
AM and PM every time the 12th hour is reached. This
interrupt prepares the each of the clock digits b
presented by the 7-segment display, and outputs the
AM/PM indicator on the RGB LED.

B. Menu Interface through LCD Display

The LCD module is the main visual interface for thenu
options the user will be allowed to configure fbetcore
functionality of the digital alarm clock system. ¥Kimg in
conjunction with the HEX keypad for user input, th@D
display changes accordingly to user interaction.
initially startup of the system, the HELP menu valicle
through the different displays configured to shdw tiser
the key mapping for the HEX keypad, the functictyadif
each key, and its uses in our system. After the PlRienu
has finished its sequence, the LCD display willigtize on
the menu option to set the current time. The sysigm
preconfigured to set the current time to 12:00 Aditer
each reset of the system.

On

The LCD interface was done through the use of a&ta
structure with the current state of the LCD mensishe
index to the cases. The “Set Time” menu has indesét
Alarm” has index 1, etc. The index is incrementad o
decremented depending on the user input throughiE¥é
keypad. Passing the current index value to the timmc
LCD_display(index)displays the menu based upon the
current menu index. When the user has selectediter e
one of the menu options for setting the time/alanu
enters their desired time or alarm setting, theviptes
menu is displayed. This functionality is capablecsi the
index is left unchanged and is prohibited from gjiag
while the user is in the menu options to set theetalarm.
While the user has entered one of the menu optibey,
are allowed to cancel and go to the previous mehis is
done through a simple function callt€D_display(index)
since the index is left unchanged upon enteringnie@u
options for configuring the time/alarm. A decisida
cancel and return to the previous main menu disdsga
any user input while in the configuration menus.isTh
makes sure that the user only commits approprizaeges

to the time/alarm settings upon pressing the “Erkey on
the HEX keypad. Please reference Section D fothéurt
information about user configuration through the othe
HEX keypad. Displayed below are pictures of the LCD
module displaying various menu displays.

C. 7-segment Time Display

The 7-seg time display is initialized to 12:00 astandard
digital clock would be found. Programming the tiomng
the HEX keypad incorporates a series of case stattsm

First each digit is defined as either the tensafrk, hours,
tens of minutes and minutes. Once the user hasdbd
time into the LCD display and pressed enter, tHaemsare
loaded into the programs variables. These variabhes
then passed into RTI interrupt 7 handler which desi
how to increment the 7-seg using a series of lfestants.
These IF statements ensure proper values are ldated
the 7-seg display for the end user. These ruldsdecthe
tens of hours being one or not displaying at afle hours
go to zero, one, or two if the tens of hours is.one
Otherwise the hours can go from one to nine. The td
minutes can be equal to zero through five, andhihrites
can go to nine. These IF statements describe alasthn
twelve hour clock. The digits are then pulled fréma RTI

7 interrupt and loaded into the output compareriofs
OCB6ICR where they are sent to their proper pladdeno
The OCBGICR is triggered every 1.01ms. This keepbh ed
the 7 segments illuminated for equal amounts ofetim
which gives the appearance to the user that thelaion
simultaneously with each at the same brightnesguied
below are the initialized 7-seg displays to 12:00 o
startup/reset.

D. User Input through HEX Keypad

Access to prior libraries was used to get the HEXpad
to function. For the HEX keypad, tlgetkey() keyscan()
and wait_keyup() functions were used. Thé&eyscan()
function is constantly reading each of the keycoded
puts this value in PORTA. If nothing is being pextshen
it returns a value of 0x10 or 16. Tgetkey()function waits
for a button to be pressed and goes through a debou
while the wait_keyup()function waits until the user has
released the key.

A breakdown of the mapping for the HEX keypad aadhe
digit's functionality in the system is as followkeys 0-9
are used as input for the time and alarm settikggs ‘A’
and ‘B’ is for maneuvering up and down through mhain
menu displays, respectively. Key ‘C’ acts as a bpake
key for users to delete the previous entry whetingethe
time or alarm. Key ‘D’ functions as a cancel butttmn
disregard current user input and return to theiptsvmain
menu display based upon the menu index (reference
Section B for further information about the LCD men
interface). Key *" acts as the enter button fonfiomation
of user selection and input. This key is used fdedion
into the different menu options as well as finalgiuser
input for the time and alarm. Key ‘#’ is not mappaad
thus has no functionality in the system.

E. Sparkfun’s MP3 Shield connected to an Arduino Uno

The purpose of utilizing a second microcontroller the
MP3 sound file as the alarm was based solely oredse
and availability of obtaining this functionality. h€&
Arduino platform is a powerhouse in the field of
microcontrollers and the Arduino Uno was a defirti
choice when it came to which Arduino was to be uised
this project. The option to expand the capabilitiésthe
Arduino Uno through the addition of Arduino Shields
allows for an even more robust and user-friendatfptm.
The shield that was utilized in this project was&fun’s
MP3 Player Shield that connects on top of the URCS.
The MP3 Shield pulls MP3 files from a microSD cartie
audio decoder IC on the shield operates in slavéenamd
receives its bitstream through SPI. After the strelaas
been decoded, the audio is sent out to a 3.5mnphead
jack that is connected to stereo speakers to stingnohusic
alarm.

We are using the powerful SFEMP3Shield Arduino
Library which acts as a driver for the audio decddeon
the MP3 Player Shield. The library allows for a
straightforward implementation of playing an MP& fi
The Dragon12-Plus2 board simply has to establistalse
communication between itself and the Arduino UnbisT
is done through connecting the SCI1 pinouts foahad Rx

to the Rx and Tx pinouts on the Arduino Uno and
communicating at the same baud rate. The micro$®ina
the MP3 Player Shield has nine different MP3 fiésred
onto it. To play a track, the Uno simply has toeige a
character of the track number. To stop the songnfro
playing, a character of ‘s’ is sent. For exampte,ptay

having the alarm trigger only once allowing thegyaim to
return to previous main screen function to acceyutteer
command from the user. As for the first problenguitckly
became evident quickly that the user interfaceldispnd
clock display must be separated for proper oparatio
These two sections of code conflict, only allowinge
device to be displayed/used at a time. In ordelidplay all

7 segments constantly, a loop must be run to kaep Bt

at a uniform period of time. Since the user integfas
waiting for the user to input data, the 7 segmeamsid not
update in a proper fashion, leaving the last Igitdmuch
brighter than all the rest. to eliminate this pesh| both the
RTI interrupt and output compare register OC6 were
implemented to multitask the operations the HCS12
processor had to take on. Both interrupts stop ntiaén
program continuously for very short durations ailogvfor

the 7 segments to be displayed at the desired romifate,
while at the same time allowing the user to intenaith

the clock menu options.

The second problem was encountered while testieg th
alarm. The test and trigger for the alarm wereidlht
placed inside RTI interrupt 7. This was so the ralar
variables were continuously compared at a unifaghion
and at a rate fast enough to trigger with mininedhg. The
problem with triggering the alarm there is thatstkstops
the rest of the interrupts from performing theindtion
and does not allow for the proper display of thecklor
provide a means for the user to turn off the alddmother
function can happen until the program returns frthra
interrupt. On the other hand placing the code lier dlarm
in the main program loop would not allow for tharah to

character of “5” to the Uno and a character “s’sét to

program loop is always waiting for the user to praskey

random song out of the nine on the microSD as ldrena

V. TESTING AND RESULTS

During assembly, the program was tested severastim
along the way to check for any bugs or glitchestha
operation. Along the way several issues were faaoritie

7 segment display, alarm trigger module, and thspldy
menu functions. These issues were caught by thbroug
testing all conditions and potential loopholes thatld be
thought of by visually inspecting the outputs oe ttHCD
and 7 segments, by listening for the output of ringsic
from the MP3 shield, and by using a clock to tirhe i
minute intervals of the output capture functiortref clock
timer.

Some major problems encountered during construaifon
the clock include finding a way to keep the clock
displaying on the 7 segments at a stabilized bmiggg
while allowing the user interact with the clock merand

alarm_trig() was created and implemented in RTI
interrupt 7. This function uses a system of Sfatements
to both trigger the alarm and to set flags lettiting
program know that the alarm was played once andlgho
not be sounded again until alarm time is encoudtagain

in another 24 hours. The main program was also fieodi
so the program would not wait until the user erdeaekey
but rather would respond to a command once thewkaesy
pressed. This was done by swapping out dltey()
command provided by the EGR 280 library with the
keyscan()command encased in a conditional while loop
which checked for the alarm triggered flag. Thikwaed
the main program to break from its main functiord an
quickly operate the alarm.

V. CONCLUSION

Overall, the project was a tremendous success, ihatls
operations and in the lessons obtained from takimguch
an involved project. The main lesson learned wasd th

seemingly simple tasks quickly became surprisingly VI
complicated as other simple tasks became intertlvine
There were few issues individually in getting the 7
segment display to display all segments at the same
intensity, the hex keypad to retrieve user inputhwuit
holding up other parts of the program, the LCDrifstee to
display the appropriate menus, the clock to fumctio
properly with the use of interrupts, or get thermldo go

off. However, when you combine all these facetsthef
project these simple tasks start to interfere wathe
another. A major portion of the project was findiagd
resolving bugs associated with improper logic onirtig
issues.

One feature we would add in the future is a sna@daem.
This could be done by generating a high or low eulge a
certain amount of clock cycles and then using edge
detection to trigger an interrupt for the alarmeT™idth of

this pulse could be generated using a formula watld

get increasingly shorter until it is perpetually, @nd the
user would have to turn the alarm off.

(1]

(2]

REFERENCES

Budakoti, A. (2014, May 9). How to generate a
random number in C? Retrieved from
http://stackoverflow.com/questions/822323/how-
to-generate-a-random-number-in-c

HASKELL, R., & HANNA, D. (2008). HEx KEYPAD. IN
LEARNING BY EXAMPLE USING C: PROGRAMMING
DRAGON12-PLus USING CODEWARRIOR (SECOND
ED., P. 28). ROCHESTER: LBE BooK

Huang, H. (2006). THE HCS12/9S12: AN
INTRODUCTION TO SOFTWARE AND HARDWARE
INTERFACING(SECOND ED.). CLIFTON PARK, NY:
DELMAR/THOMSON LEARNING.

PORTER, B. (2012, JANUARY 28). SPARKFUN MP3
SHIELD ARDUINO LIBRARY. RETRIEVED DECEMBER 2,
2014, FROM
HTTP://WWW .BILLPORTER.INFO/2012/01/28/SPARKFUN-
MP3-SHIELD-ARDUINO-LIBRARY/

