

Digital Alarm Clock

Matthew Screws, Binh Ton, Adam Schrader

Electrical and Computer Engineering Department
School of Engineering and Computer Science

Oakland University, Rochester, MI
ECE 470/570 Fall 2014 - Computer-Based System Design

Professor Daniel Llamocca
mdscrews@oakland.edu, bqton@oakland.edu, arschrad@oakland.edu

I. ABSTRACT

The final project consists of a digital time clock with sleep
alarm capabilities. This device is made using the HCS12
Dragon12-Plus2 in communication with an Arduino Uno
with Sparkfun’s MP3 Shield connected. The utilization of
the Arduino platform was to gain access to community
created library functionality for connection with
Sparkfun’s MP3 Shield. The MP3 Shield allows an MP3
sound file to play as the alarm. The overall purpose and
functionality of the project is within today’s scope of a
modern digital alarm clock device and is the driving
decision for implementing this system on the HCS12
Dragon12-Plus2 microcontroller. The main controllers of
the Dragon12-Plus2 and Arduino Uno boards have been
programmed by using Freescale’s CodeWarrior and
Arduino’s Sketch Pad Compilers, respectively.

II. INTRODUCTION

Our desire to utilize all the skills acquired in the class
made us want to make something that we thought would be
of interesting and applicable to our daily lives. As such we
settled on making a fully functional and programmable
alarm clock. This consists of a digital time clock with an
MP3 music file as the output for alarm capabilities.

We are using the timer module of the Dragon12 Plus board
to construct the real-time clock. The time is displayed
utilizing the four 7-segment displays. Ante-meridian and
post-meridian are shown using the Dragon12-Plus2 RGB
LED. Use of the HEX keypad is the way the user interfaces
with the clock functionalities. Keys on the HEX keypad
have been defined and allow the user to interface with a
menu displayed on the LCD module connected to the
Dragon12-Plus2 board. Menu options range from core
clock functionality like setting the current time as well as
the alarm time. These options are reflected on the LCD
module. For the actual alarm we are using an Arduino Uno
with a MP3 shield. This is connected via USB and
communicates serially using SCI.

III. METHODOLOGY

A. Clock

The clock has been designed around the use of an output
compare timer module set to trigger an interrupt every
250ms. This is accomplished by using a prescaler of 128 in
the timer module creating a timer clock that runs at
187.5KHz and triggers an interrupt every 46,875 clock
cycles. Once in the interrupt, a couple of “if” statements
are used to create 1 minute delays. Once a minute has
passed, the variable named “min” is incremented by one

and the delay counters “mcount” and “ms250_count” to
zero to prepare them for the next “minute” count.

Using the RTI module, a real time interrupt was then used
to take the “min” variable from the above interrupt and
adjust the remaining digits of the clock to correspond to a
time of day. This interrupt is triggered every 10.24ms and
works by also using a series of “if” statements. After ten
minutes have passed, this interrupt will increment the the
variable “tmin” to keep track of each set of ten minutes and
reset the “min” variable back to zero. Once sixty minutes
have passed, the variable “hr” is incremented and while the
previous two variable are again reset to zero. The rest of
the “if” statements are used to control the hours making
sure that the hours and tens of hours digits will adjust
properly until twelve is reached and then reset to one. The
RTI interrupt is also responsible for changing the status of
AM and PM every time the 12th hour is reached. This
interrupt prepares the each of the clock digits to be
presented by the 7-segment display, and outputs the
AM/PM indicator on the RGB LED.

B. Menu Interface through LCD Display
The LCD module is the main visual interface for the menu
options the user will be allowed to configure for the core
functionality of the digital alarm clock system. Working in
conjunction with the HEX keypad for user input, the LCD
display changes accordingly to user interaction. On
initially startup of the system, the HELP menu will cycle
through the different displays configured to show the user
the key mapping for the HEX keypad, the functionality of
each key, and its uses in our system. After the HELP menu
has finished its sequence, the LCD display will initialize on
the menu option to set the current time. The system is
preconfigured to set the current time to 12:00 A.M. after
each reset of the system.

The LCD interface was done through the use of a “case”
structure with the current state of the LCD menus as the
index to the cases. The “Set Time” menu has index 0, “Set
Alarm” has index 1, etc. The index is incremented or
decremented depending on the user input through the HEX
keypad. Passing the current index value to the function
LCD_display(index) displays the menu based upon the
current menu index. When the user has selected to enter
one of the menu options for setting the time/alarm and
enters their desired time or alarm setting, the previous
menu is displayed. This functionality is capable since the
index is left unchanged and is prohibited from changing
while the user is in the menu options to set the time/alarm.
While the user has entered one of the menu options, they
are allowed to cancel and go to the previous menu. This is
done through a simple function call to LCD_display(index)
since the index is left unchanged upon entering the menu
options for configuring the time/alarm. A decision to
cancel and return to the previous main menu disregards
any user input while in the configuration menus. This
makes sure that the user only commits appropriate changes

to the time/alarm settings upon pressing the “Enter” key on
the HEX keypad. Please reference Section D for further
information about user configuration through the use of the
HEX keypad. Displayed below are pictures of the LCD
module displaying various menu displays.

C. 7-segment Time Display
The 7-seg time display is initialized to 12:00 as a standard
digital clock would be found. Programming the time using
the HEX keypad incorporates a series of case statements.

First each digit is defined as either the tens of hours, hours,
tens of minutes and minutes. Once the user has loaded the
time into the LCD display and pressed enter, the values are
loaded into the programs variables. These variables are
then passed into RTI interrupt 7 handler which decides
how to increment the 7-seg using a series of IF statements.
These IF statements ensure proper values are loaded into
the 7-seg display for the end user. These rules include the
tens of hours being one or not displaying at all. The hours
go to zero, one, or two if the tens of hours is one.
Otherwise the hours can go from one to nine. The tens of
minutes can be equal to zero through five, and the minutes
can go to nine. These IF statements describe a standard
twelve hour clock. The digits are then pulled from the RTI
7 interrupt and loaded into the output compare interrupt
OC6ICR where they are sent to their proper place holder.
The OC6ICR is triggered every 1.01ms. This keeps each of
the 7 segments illuminated for equal amounts of time,
which gives the appearance to the user that they are all on
simultaneously with each at the same brightness. Pictured
below are the initialized 7-seg displays to 12:00 on
startup/reset.

D. User Input through HEX Keypad

Access to prior libraries was used to get the HEX keypad
to function. For the HEX keypad, the getkey(), keyscan(),
and wait_keyup() functions were used. The keyscan()
function is constantly reading each of the keycodes and
puts this value in PORTA. If nothing is being pressed then
it returns a value of 0x10 or 16. The getkey() function waits
for a button to be pressed and goes through a debounce
while the wait_keyup() function waits until the user has
released the key.
A breakdown of the mapping for the HEX keypad and each
digit’s functionality in the system is as follows: Keys 0-9
are used as input for the time and alarm settings. Keys ‘A’
and ‘B’ is for maneuvering up and down through the main
menu displays, respectively. Key ‘C’ acts as a backspace
key for users to delete the previous entry when setting the
time or alarm. Key ‘D’ functions as a cancel button to
disregard current user input and return to the previous main
menu display based upon the menu index (reference
Section B for further information about the LCD menu
interface). Key ‘*’ acts as the enter button for confirmation
of user selection and input. This key is used for selection
into the different menu options as well as finalizing user
input for the time and alarm. Key ‘#’ is not mapped and
thus has no functionality in the system.

E. Sparkfun’s MP3 Shield connected to an Arduino Uno

The purpose of utilizing a second microcontroller for the
MP3 sound file as the alarm was based solely on the ease
and availability of obtaining this functionality. The
Arduino platform is a powerhouse in the field of
microcontrollers and the Arduino Uno was a definitive
choice when it came to which Arduino was to be used in
this project. The option to expand the capabilities of the
Arduino Uno through the addition of Arduino Shields
allows for an even more robust and user-friendly platform.
The shield that was utilized in this project was Sparkfun’s
MP3 Player Shield that connects on top of the Uno’s PCB.
The MP3 Shield pulls MP3 files from a microSD card. The
audio decoder IC on the shield operates in slave mode and
receives its bitstream through SPI. After the stream has
been decoded, the audio is sent out to a 3.5mm headphone
jack that is connected to stereo speakers to sound the music
alarm.

We are using the powerful SFEMP3Shield Arduino
Library which acts as a driver for the audio decoder IC on
the MP3 Player Shield. The library allows for a
straightforward implementation of playing an MP3 file.
The Dragon12-Plus2 board simply has to establish serial
communication between itself and the Arduino Uno. This
is done through connecting the SCI1 pinouts for Tx and Rx
to the Rx and Tx pinouts on the Arduino Uno and
communicating at the same baud rate. The microSD card in
the MP3 Player Shield has nine different MP3 files stored
onto it. To play a track, the Uno simply has to receive a
character of the track number. To stop the song from
playing, a character of ‘s’ is sent. For example, to play
track 5 on the microSD card, the Dragon12 sends a
character of “5” to the Uno and a character “s” is sent to
stop the alarm. The system was programmed to play a
random song out of the nine on the microSD as the alarm.

IV. TESTING AND RESULTS

During assembly, the program was tested several times
along the way to check for any bugs or glitches in the
operation. Along the way several issues were found in the
7 segment display, alarm trigger module, and the display
menu functions. These issues were caught by thorough
testing all conditions and potential loopholes that could be
thought of by visually inspecting the outputs on the LCD
and 7 segments, by listening for the output of the music
from the MP3 shield, and by using a clock to time the 1
minute intervals of the output capture function of the clock
timer.

Some major problems encountered during construction of
the clock include finding a way to keep the clock
displaying on the 7 segments at a stabilized brightness
while allowing the user interact with the clock menus and

having the alarm trigger only once allowing the program to
return to previous main screen function to accept another
command from the user. As for the first problem, it quickly
became evident quickly that the user interface display and
clock display must be separated for proper operation.
These two sections of code conflict, only allowing one
device to be displayed/used at a time. In order to display all
7 segments constantly, a loop must be run to keep each lit
at a uniform period of time. Since the user interface is
waiting for the user to input data, the 7 segments would not
update in a proper fashion, leaving the last lit digit much
brighter than all the rest. to eliminate this problem, both the
RTI interrupt and output compare register OC6 were
implemented to multitask the operations the HCS12
processor had to take on. Both interrupts stop the main
program continuously for very short durations allowing for
the 7 segments to be displayed at the desired uniform rate,
while at the same time allowing the user to interact with
the clock menu options.

The second problem was encountered while testing the
alarm. The test and trigger for the alarm were initially
placed inside RTI interrupt 7. This was so the alarm
variables were continuously compared at a uniform fashion
and at a rate fast enough to trigger with minimal delay. The
problem with triggering the alarm there is that this stops
the rest of the interrupts from performing their function
and does not allow for the proper display of the clock or
provide a means for the user to turn off the alarm. No other
function can happen until the program returns from the
interrupt. On the other hand placing the code for the alarm
in the main program loop would not allow for the alarm to
actually sound. This is due to the fact that the main
program loop is always waiting for the user to press a key
on the hex keypad. To correct this error, the function
alarm_trig() was created and implemented in RTI
interrupt 7. This function uses a system of “if” statements
to both trigger the alarm and to set flags letting the
program know that the alarm was played once and should
not be sounded again until alarm time is encountered again
in another 24 hours. The main program was also modified
so the program would not wait until the user entered a key
but rather would respond to a command once the key was
pressed. This was done by swapping out the getkey()
command provided by the EGR 280 library with the
keyscan() command encased in a conditional while loop
which checked for the alarm triggered flag. This allowed
the main program to break from its main function and
quickly operate the alarm.

V. CONCLUSION

Overall, the project was a tremendous success, both in its
operations and in the lessons obtained from taking on such
an involved project. The main lesson learned was that

seemingly simple tasks quickly became surprisingly
complicated as other simple tasks became intertwined.
There were few issues individually in getting the 7-
segment display to display all segments at the same
intensity, the hex keypad to retrieve user input without
holding up other parts of the program, the LCD interface to
display the appropriate menus, the clock to function
properly with the use of interrupts, or get the alarm to go
off. However, when you combine all these facets of the
project these simple tasks start to interfere with one
another. A major portion of the project was finding and
resolving bugs associated with improper logic or timing
issues.

One feature we would add in the future is a snooze alarm.
This could be done by generating a high or low edge over a
certain amount of clock cycles and then using edge
detection to trigger an interrupt for the alarm. The width of
this pulse could be generated using a formula that would
get increasingly shorter until it is perpetually on, and the
user would have to turn the alarm off.

VI. REFERENCES

[1] Budakoti, A. (2014, May 9). How to generate a
random number in C? Retrieved from
http://stackoverflow.com/questions/822323/how-
to-generate-a-random-number-in-c

[2] HASKELL, R., & HANNA, D. (2008). HEX KEYPAD. IN

LEARNING BY EXAMPLE USING C: PROGRAMMING

DRAGON12-PLUS USING CODEWARRIOR (SECOND

ED., P. 28). ROCHESTER: LBE BOOK
[3] HUANG, H. (2006). THE HCS12/9S12: AN

INTRODUCTION TO SOFTWARE AND HARDWARE

INTERFACING(SECOND ED.). CLIFTON PARK, NY:
DELMAR/THOMSON LEARNING.

[4] PORTER, B. (2012, JANUARY 28). SPARKFUN MP3

SHIELD ARDUINO LIBRARY. RETRIEVED DECEMBER 2,
2014, FROM

HTTP://WWW.BILLPORTER.INFO/2012/01/28/SPARKFUN-
MP3-SHIELD-ARDUINO-LIBRARY/

