Instrument Cluster Display

Grant Scott III
Erin Lawler
Mike Carlson

ECE 570
December 4th, 2014
Presentation Outline

- **Introduction and Motivation**
- **Features**
 - Temperature Sensing
 - LCD Display
 - Fahrenheit/Celsius Selection
 - RGB LED temperature scale
 - Ultrasonic distance sensing and alarm
- **Conclusions and Recommendations**
Project Introduction

- Vehicle electronics system simulator
- Dragon12 board provides easy system simulator
- Automotive driver information systems
 - Temperature monitor
 - Icy conditions warning LED
 - Ultrasonic parking proximity sensors
Motivation

- In-vehicle testing is expensive
 - Vehicle cost
 - Insurance
 - Fuel

- Fulfill a need for a development platform
 - Dragon12 board is portable and has small footprint
Features Walk-Through

- **Temperature Sensor**
 - PAD5
 - **ADC Converter**

- **Ultrasonic Sensor**
 - PORTT
 - **Timer Module**

- **Push Button**
 - PORTH
 - **Interrupt**

- **5V from External Power Source**

- **HCS12**

- **Connections**
 - PORTK
 - **LCD Display**
 - PORTP/M
 - **RGB LED**
 - PORTT
 - **Speaker**
Temperature Sensing

- Many vehicle “features” use internal and/or external temperature
 - Climate Control
 - Weather warnings

- TI LM45 Sensor
 - On-board 0°C to 100°C but with HW modification can read -20°C to 100°C
 - Not used in this project due to the need for another voltage rail which was not in scope
 - MCU reads ADC signal from the sensor at a ~200ms rate
ADC Setup

- 2MHz ADC Clock
- Sample Hold Time set to 4 clock periods (2us) for extra confidence due to no timing constraints in this project
 - Target is 5\tau based on the RC time constant calculated to reach 99% of the target voltage
 - LM45 does not have significant source resistance (not in datasheet) which means the charge share time is small (<400ns) which equates to 2us being enough time for proper accuracy
LCD Display

- Clear display needed for pleasant visual

- Hitachi HD44780
 - 16mm x 63mm display
 - Many fonts available along with text sizes
 - 4bit or 8bit data mode

- PORTK is used to control the display
 - 2 line, 5x7 font selected
 - 4bit data is used by sending the upper 4 bits first than the lower 4 bits (2 transfers)
 - This reduces the number of connections to the MCU
 - Mode pins are used to command display and write data to the display using the same 4 connections to the MCU (total of 7 connections)
Fahrenheit/Celsius Toggle

- Vehicles in North America need both F/C compatibility

- A push button is used to toggle a flag
 - If Celsius, display Celsius
 - If Fahrenheit, run the Celsius temp through the function \((9/5) \times \text{temp} + 32 \), then display that value

- PORTH interrupt, called when the button is pressed, is used to toggle the flag
RGB LED Temperature Scale

- Qualitative temperature indication
- Could warn driver of icy conditions
- RGB LED is connected to PWM ports 4, 5, and 6
- Varying the proportion of each color provides a continuous appearance
- Red when hot, Blue when cold, green mixed in to avoid purple (diagram)
RGB LED Temperature Scale, continued

- Integer math made the task more difficult
- PWM Duty Cycle 0-255
- Temperature min~0degC, Tmax~50degC
- Use of ADC counts not feasible because of temp sensor range (Only 1V change for 0degC-100degC)
- Qualitative indicator only
Ultrasonic Distance Sensor

- Used in industry to alert driver of obstacles at low speed
- The code uses an output compare register to trigger the HC-SR04 sensor’s measurement routine
- The sensor requires one trigger pulse longer than 10uS and listens for the return signal.
- Device returns pulse with length corresponding to distance
Ultrasonic Distance Sensor, continued

- Distance corresponds to a frequency
 - Higher frequency indicates a closer object distance

- HC-SR04 sensor operates consistently in the 3cm to 3 meter range

- PP5, the 5th PWM port is wired to both the buzzer and the RGB LED
 - RGB LED chosen to use PWM
 - Speaker has selectable input

- As objects approach the sensor, the speaker pitch rises
Conclusions

- Could serve as the basis for a commercial test-bench
- Code written in functions to allow processor portability
- Temperature sensor could be replaced with any analog sensor - many automotive applications
- Ultrasonic sensor could be optimized to accommodate longer distances
- Project provided a great learning experience in C code, assembly, and microcontroller usage
Recommendations

- **Temperature Sensor**
 - Choose a sensor that has full automotive range -40°C to 125°C without HW modifications
 - Save external component cost

- **LCD Display**
 - Choose a display that uses less MCU pins which would communicate through SPI for example
 - Save MCU Cost
 - Ability to dim the display

- **Temperature Warning**
 - Choose a display to allow for snowflakes for cold and a thermometer for heat instead of RGB
 - Ability for user to change temperature limits/scale

- **Ultrasonic Sensor**
 - Select a sensor with an optimized sampling speed to ensure safety in high speed situations
 - Optimize circuit, implementing an op-amp to expand effective sensing to longer distances