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Section 1 — Introduction

Numerical methods are techniques by which complathematical problems are formulated so
that they can be solved with arithmetic operatiofibere are many such methods, but they share
one common characteristic: they always involvedamounts of tedious arithmetic operations,
making them ideal for computer applications.

Numerical methods differ from the more traditioraalytical approaches to mathematics.
Analytical mathematics tend to focus on the sotutechniques themselves, and not so much on
the problem formulation or the interpretation of tlesults. In addition, the number and types of
applied mathematical problems encountered in agfiiléds such as engineering that have
closed-form solutions are very limited. Numerigathods focus on the problem formulation
and the close interpretation of the results in otdevalidate both the model and the results
themselves.

In this course we will become familiar with numeditechniques covering the following topics:
* Roots of equations

Systems of linear equations

Optimization

Curve fitting

Numerical differentiation and integration

Ordinary differential equations

Partial differential equations

We will make extensive use of computer programmirsipg both Excel and Matlab as
programming environments.

1.1 Approximations and Round-off Errors

All numerical methods involve the approximation andnd-off of numbers, and it will be
extremely important for us to be able to quantify effect these approximations have on the
results of out calculations.

Thesignificant digits of a number are those that can be used with ceméel usually
corresponding to a certain number of digits knoecgely plus one estimated digit.

Accuracy refers to how closely a computed or measured \eduees with the true value.

Precision is related to repeatability and refers to how elpsndividual computed or measured
values agree with each other. Often we will havenake decisions to accept lower levels of
accuracy in order to efficiently solve problemsheTechniques we choose must be sufficiently
accurate to meet the requirements of a particulaslem and must be precise enough to meet the
requirements of engineering design. We will oftse the ternerror to both inaccuracy and
imprecision.



1.2 Definitions of Error

There are two basic types of errors inherent inemical methods.Truncation errors are those
which result when approximations are used to remtesxact mathematical procedur&ound-
off errors results when numbers with limited significant figs are used to represent exact
numbers. Both types of error can be formulated as:

True value = approximation + error

or
E: = True value — approximation

wherekE; is the true error. The relative error is defirmsd

true_error
t  true_value (1.2.1)
In the application of numerical methods, exact galare known when we have an analytical
solution to compare. Instead, we will normalize #uror to the best available estimate of the
true value, that is, the approximation itself:

_ approximate__error
a  approximation (1.2.2)

In addition, we need to estimate the error witHowiwing the true value. Certain numerical
methods involve iterative calculations, where aalation is made based on the results of a
previous calculation to computer better and befpgroximations:

_ current __approximation — previous__approximation
a current _approximation

(1.2.3)

Errors can be either positive or negative. Noryna# are not concerned with the sign but
whether it is smaller than some pre-specified partderancegs. Calculations are performed
until the absolute value of the relative approxienatror falls below the tolerance:

e, <. (1.2.4)

To find a result that is correct to at leastignificant digits:

£, = (05x10°™)% (1.2.5)

1.3 Round-Off Errors



Without going into too much detail, computers (@attulators) retain only a fixed number of
significant figures during calculations. This lead what is known a®und-off error. The
following aspects are always important to keep indwhen performing computer or calculator
calculations:

» Thereisalimited number of quantities that may be represented. Only pre-defined types of
numbers can be stored in computers, and each aga tHefined range associated with it.
Any attempt to use numbers outside of these raregedts inoverflow errors.

» Thereareonly afinite number of quantitiesthat can be represented within the range.

Due the fact that computers use a fixed numbeigoifecant figures, the degree of precision
is limited. Clearly, irrational numbers cannotgrecisely represented but most rational
numbers also cannot be represented precisely eifffese types of errors are called
guantizing errors.

* Theinterval between numbersincreases as the numbers grow in magnitude. Floating-
point representations preserve significant didjitg,this feature also means that quantizing
errors are proportional to the magnitude of the ln@inbeing represented.

Even though round-off errors can be significantstremgineering calculations can be carried out
with more than acceptable precision on most commputed calculators. When precision is of
the utmost importance, the use of extended precg@antities can greatly mitigate the effects of
round-off errors and is recommended.

1.4 Truncation Errors and the Taylor Expansion

The Taylor Series

The Taylor Series is an important mathematical tiseld to approximate the values of a
function, and we will make extensive use of itsganties. Recall from calculus that if a function
f and itsn+ 1 derivatives are continuous in the vicinity of arfiog, then its value at a nearby
pointxi+1 can be expressed as

f"(x.)
f (Xi+1) =f (Xi ) +f ,(Xi )(Xi+1 =X ) +TI(Xi+1 - X )2
) 1.4.1
f (3)(Xi) ; f (4)(Xi) . ( )
+T(Xi+l _Xi) +T(Xi+1 _Xi) + Rn
where the remainder term accounts for the rediefdrms of the infinite series
f () n+
R, =+ (- x) (1.4.2)

© (n+1)!

The subscript n denotes that this isimorder approximation anglis a value that lies between
pointx and pointx+1. Note that this remainder is an exact representaf the error that would
be a result of using a finite number of terms ef Taylor Series.



We will often simplify the Taylor series to be defig astep sizeh = x+1 - X and writing Eq.
(1.4.1) as

f"(x f(3) _ f(4) _
f (%) = F0¢) + F'(x)h+ g(')h% BEX')h% 4fx')h4+Rn (1.4.3)

where the remainder (1.4.2) is now given as

(n+1) n+l
R = _f(n +1()<? h (1.4.4)

In generalnth-order Taylor expansions are exactrith-order polynomials. For other
differentiable and continuous functions, such gsoeentials and transcendental functions, a
finite number of terms does not exactly represeatfinction. Each additional term adds some
improvement to the approximation. The assessnfdmiw many terms to include in order to be
“close enough” for a given problem is the esserficeimerical analysis.

Even though the Taylor Series will be the basia ntimber of techniques we will study, its use
has two important drawbacks. First, the valué if not known exactly, only that it is between
the valuesi andxi+1. This means that we will rarely be able to prelgiknow the error in our
approximations. Secondly, since we will often kiwbw the function that we are approximating
(if we did, there would be no need to approxim#)eand its derivatives will also be unknown.
However, the properties of the Taylor Series arg useful in estimating the errors associated
with a numerical technique, particularly truncatemors.

In any numerical technique, we have control ovetage parameters of the analysis. One of the
most important is the step siae We can look at Eq. (1.4.2) Rs= O(h™?1), which means that
the truncation error is “of ordef™?, that is, it is proportional tb™*. This gives us a guideline
with which to change an analysis to increase acgueiad reduce error.

As an example of how this is used in numerical gsig| let’s estimate the first derivative of the
functionf in the vicinity ofx. By Eq. (1.4.3)

f(X) = Fx)+ F'(x)h+R
solving for the first derivative gives

F'(x) = f(xi+1)h_ f(x) +%

using Eq (1.4.2) gives

& — f @ (4() h2 :O(h)
h ~ h(n+1)!



Therefore, the estimate of the first derivative &asincation error d(h), which means that the
approximation is proportional to the step dizeConsequently, if we halve the step size, we
would expect to halve the truncation error. Thastigular approximation for the first derivative
is called theirst forward difference.

Numerical Differentiation
The Taylor expansion of a function can be represkehy:

f"(x f(3) :
f(x,)=f(x)+f'(x)h+ ;X')h2++ 3fxl)h3... (1.4.5)

The Taylor Series can also be expanded backwarckdolate a previous value based on a
current value.

f"(x f ®(x
f(xo)=f(x)-f'(x)h+ ;IXI) h* - 3EXI) he+... (1.4.6)

which can be used to show the first backward diffiee:

fr(xi): f(xi)_hf(xi—l) +O(h)

Subtracting E1 (1.4.6) from (1.4.5) and solvingtfoe first derivative yields theentered
difference approximation:

f '(Xi) — f (Xi+1)2_hf (Xi—l) + O(hz) (1.4.7)

Note that this error term is proportionality so that if we halve the step size, the error is
guartered.

Error Propagation
Using the first-order Taylor Series, it can be shdie errors associated with common
mathematical operations using inexact numhemnd v can be summarized as

Operation Estimated Error

Addition AU +V) A) +A(V)

Subtraction A(U -V) A) +A(V)

Multiplication A(UV) |J|A(\7) + |\7|A(G)

Division A(g) jaw) +2|\7|A(G)
v



Stability and Condition

Thecondition of a mathematical problem is a measure of itsieitxsto changes in its input
values. A computation isumerically unstable if the uncertainty of the input values is grossly
magnified by the numerical method.

Using a first-order Taylor Series,
fO)=f(X)+ ' (X)(x=-X)
Therelative error of f(x) is

)= 1) ' (Rx=X)
f(X) f(X)

Therdativeerror of x is

x,‘

Thecondition number is the ratio of these relative errors

Xf'(X)

Condition _number = —=
f(X)

(1.4.7)

and is a measure of how the uncertainty im magnified inf(x). A value of 1 means that the

function’s relative error matches the relative eimax. A value greater than 1 means that the
relative error is amplified; values less than oreamthat the error is attenuated. Functions with
large condition numbers are said toilbeconditioned.

1.5 Total Numerical Error

Thetotal numerical error is the summation of the truncation and round-afms. In general,
the way to minimize round-off errors is to incre#is® number of significant figures used in the
calculation. Round-off error increases due to sdhtve cancellation and as the number of
calculations in an analysis becomes larger. Trimc&rror can be reduced by decreasing the
step size, which leads to increased numbers ofiledions and an increase in round-off errors.

Numerical errors can be controlled with certainegahguidelines:

» Avoid subtracting two nearly-equal numbers to awgititractive cancellation

» Work with the smallest numbers first and progressivnclude the largest

» The use of numerical experiments and sensitivighaes may provide insight to numerical
strategies

» Performing the analysis with different modeling ananerical techniques may provide
more confidence in the final results.



Blunders

Gross errors, dolunders, are sometimes unavoidable. Sources of blundersiainly based in
human imperfection and include errors of the madgtirocess and incorrect programming. We
will frequently mention techniques with which tocéd blunders and check our numerical
calculations.

Formulation Errors

Formulation or modeling errors are due to inconghaathematical models. It is important to
note that formulation errors cannot be resolvethwitreased numerical analysis. Poorly
conceived models cannot yield useful results, nianaow sophisticated the analysis
techniques.

Data Uncertainty
All physical data is subject to variation and umaity, and always exhibits both inaccuracy and
imprecision. Where such variation is importaninterpret the results in a meaningful way, the

analysis must be carried out with data that is esd in statistical terms, usually consisting of a
central measure and the degree of spread aboutethmal measure.

1.6 Example — Calculation of Archimedes’s Constaritr)
n=~22/7,e<13x 16

n~355/113¢< 2.7 x 16°

w (_qyk-1
Standard Gregory-Liebnitz serieg:= 42%
k=1 -

. ) ) ) © 1
Telescoping Gregory-Liebnitz serleB'.:SE _
ping =regory < [2(2k-1)]* -1

Vieta’s Product:rr = 4R0lfl%, R = /1+2Rk-1 R, = \E




