18

Equations of Motion: Normal and Tangential Components

Ref: Hibbeler § 13.5, Bedford & Fowler: Dynamics § 3.4

In an earlier example (#14) we looked at the motion of a skateboarder along a curved path. Now, we apply the equations of motion to that problem to investigate the significance of friction in the problem.

Example: A skateboarder in a quarter pipe.

A skateboarder with a mass of 55 kg has dropped into a 3 meter (radius) quarter pipe. When she's dropped a distance of 1 meter her speed is 3.2 m/s and is increasing by 7.8 m/s². At this location the surface is at an angle of 19.4° from vertical.

Draw a free body diagram of this system including a friction force. Neglect the size of the skateboarder and her board. Solve the equations of motion for the normal force, N_{A_1} and the friction force, F. Then, calculate the coefficient of kinetic friction required to generate the observed friction force.

Solution

A free-body diagram for this system looks like the following:

First, information from the problem statement is entered into MATLAB.

» v = 3.2;	%m / s
» a_t = 7.8;	%m / s^2
» M = 55;	%kg
» g = 9.807;	%m / s^2
» alpha = 19.4 * pi /180;	%radians - angle from vertical
» rho = 3;	%meters - circular path, constant rho

The tangential acceleration at this location was given in the problem statement, as $a_t = 7.8 \text{ m/s}^2$. The normal acceleration can be calculated from the stated velocity (3.2 m/s) and the radius of curvature (3 m).

» a_n = v.^2 ./ rho %m / s^2 a_n = 3.4133

The normal component of the equation of motion can be used to find N_A , but first we need the normal component of the skateboarder's weight.

» W = M .* g W = 539.3850	%Newtons
» W_n = -W .* sin(alpha) W_n = -179.1627	%Newtons - minus sign accounts for direction
» W_t = W .* cos(alpha) W_t = 508.7602	%Newtons
Then find the normal force, N _A . $\gg \% N_A + W_n = M * a_n$ so $\gg N_A = M .* a_n - W_n$ $N_A =$ 366 8961	%Newtons

Next, use the tangential component of the equation of motion to determine the friction force.

» % W_t + F = M * a_t so... » F = M .* a_t - W_t %Newtons F = -79.7602

The friction force, F, and the normal force, NA, can be used together to calculate the apparent coefficient of kinetic friction for this problem.

» mu_k = abs(F) ./ N_A %need only the magnitude of F here
mu_k =
0.2174

Annotated MATLAB Script Solution

```
%
            Friction Force on a Skateboarder
                                                         %
*****
%Set problem parameters as stated in the problem.
v = 3.2;
                          %m/s
                          %m/s^2
a_t = 7.8;
M = 55;
                          %kg
g = 9.807;
                          %m/s^2
                         %radians - angle from vertical
alpha = 19.4 * pi /180;
rho = 3;
                         %meters - circular path, constant rho
%Solve for the normal acceleration.
a_n = v.^2 ./ rho; %m/s^2
fprintf('\nNormal Acceleration = %1.1f M/s^2 \n', a_n)
%Find the normal and tangential components of the skateboarder's weight
W = M \cdot g;
                          %Newtons
W_n = -W .* sin(alpha); %Newtons - minus sign accounts for direction
W_t = W .* cos(alpha);%Newtons
fprintf('Skateboarder''s Weight = %1.0f N\n', W)
fprintf('\tNormal component = %1.0f N\n', W_n)
fprintf('\tTangential component = %1.0f N\n', W_t)
%EQ of MOTION: normal component
%N_A + W_n = M * a_n so...
N_A = M .* a_n - W_n;
                        %Newtons
fprintf('Normal Force = %1.2f N\n', N_A)
%EQ of MOTION: tangential component
W_t + F = M * a_t so...
F = M .* a t - W t;
                         %Newtons
fprintf('Friction Force = %1.1f N n', F)
                          %Calculate the coefficient of kinetic friction
mu_k = abs(F) ./ N_A;
                         %need only the magnitude of F here
fprintf('Coefficient of Kinetic Friction = %1.2f\n\n', mu_k)
```