Calculating Moments of Inertia

Ref: Hibbeler § 10.1-10.2, Bedford & Fowler: Statics § 8.1-8.2

Calculating moments of inertia requires evaluating integrals. This can be accomplished either symbolically, or using numerical approximations. Mathcad’s ability to integrate functions to generate numerical results is illustrated here.

Example: Moment of Inertia of an Elliptical Surface

Determine the moment of inertia of the ellipse illustrated below with respect to a) the centroidal x' axis, and b) the x axis.

The equation of the ellipse relative to centroidal axes is

$$\frac{x'^2}{8^2} + \frac{y'^2}{14^2} = 1$$

In this problem, x and y have units of cm.

Solution

The moment of inertia about the centroidal x axis is defined by the equation

$$I_{x'} = \int y'^2 \, dA$$

where dA is the area of the differential element indicated in the figure above.

$$dA = 2 \times dy'$$

So, the integral for moment of inertia becomes
\[I_{x'} = \int_{\Delta} y'^2 \, 2 \, x \, dy' \]

Furthermore, \(x \) (or \(x' \)) can be related to \(y' \) using the equation of the ellipse.

Note: Because of the location of the axes, \(x = x' \) in this example.

\[x = x' = 8 \sqrt{\frac{1 - y'^2}{14^2}} \]

The equation for the moment of inertia becomes:

\[I_{x'} = \int_{-8}^{8} y'^2 \, 2 \, \sqrt{\frac{8^2 (1 - y'^2)}{14^2}} \, dy' \]

To perform this integration we need to place the integrand in an m-file function and call MATLAB's quad() function on the m-file.

```matlab
function Ix_integrand = Moment_Of_Inertia_Integrand(y_prime)
%Saved as Moment_Of_Inertia_Integrand.m in the MATLAB search path.

x = sqrt(8.^2 .* (1 - y_prime.^2./14^2));
Ix_integrand = y_prime.^2 .* 2 .* x;
end
```

\[I_{x'} = \text{quad('Moment_Of_Inertia_Integrand',-8,8)} \quad \text{cm}^4 \]

The moment of inertia relative to the original \(x \) axis can be found using the parallel-axis theorem.

\[I_x = I_{x'} + A \, dy^2 \]

Where \(A \) is the area of the ellipse, and \(dy \) is the displacement of the centroidal \(y \) axis from the original \(y \) axis.

The required area can be calculated by integration in the same fashion as before.

```matlab
function A = Area_Integrand(y_prime)
%Saved as Area_Integrand.m in the MATLAB search path.

x = sqrt(8.^2 .* (1 - y_prime.^2 ./ 14^2));
A = 2 .* x;
end
```

\[A = \text{quad('Area_Integrand',-8,8)} \quad \text{cm}^2 \]

\[A = 4890 \]

Then the moment of inertia about \(x \) can be determined.

\[dy = 16; \quad \text{cm} \]
I_x = Ix_prime + A .* dy.^2

66660

Annotated MATLAB Script Solution

```matlab
function Ix_integrand = Moment_Of_Inertia_Integrand(y_prime)
%Saved as Moment_Of_Inertia_Integrand.m in the MATLAB search path.
x = sqrt(8.^2 .* (1 - y_prime.^2./14^2));
Ix_integrand = y_prime.^2 .* 2 .* x;
end

function A = Area_Integrand(y_prime)
%Saved as Area_Integrand.m in the MATLAB search path.
x = sqrt(8.^2 .* (1 - y_prime.^2 ./ 14^2));
A = 2 .* x;
end

Ix_prime = quad('Moment_Of_Inertia_Integrand',-8,8); %cm^4
fprintf('
The moment of inertia relative to the x'' axis is %1.0f cm^4
', Ix_prime)

A = quad('Area_Integrand',-8,8); %cm^2
fprintf('The area of the ellipse is %1.2f cm^2
', A)

dy = 16; %cm
I_x = Ix_prime + A .* dy.^2; %cm^4
fprintf('The moment of inertia relative to the x axis is = %1.0f cm^4
', I_x)
```