

Equilibrium of a Rigid Body

Ref: Hibbeler § 5.1-5.3, Bedford & Fowler: Statics § 5.1-5.2

When forces are applied to *rigid bodies*, the conditions of *equilibrium* can be used to determine any unknown forces, and the *reactions* at the supports.

Example 1: Spring Support

A force, F, is applied to the end of a bar to stretch a spring until the bar is horizontal. If the spring constant is k = 600 N/m and the unstretched length of the spring assembly (spring and connecting links) is 75 mm, and ignoring the mass of the bar, determine:

- a) the magnitude of the applied force, F, and
- b) the reactions at point A.

Solution

First, a free-body diagram is drawn.

We have assumed that the reactions at A will include both x and y components, and will calculate the actual values of A_x and A_y as part of the solution process.

First, a little trigonometry is required to obtain the extended length of the spring assembly.

» deg2rad = pi /180;	%Conversion factor from degrees to radians
» L_ext = 120 / cos(28 * deg2rad)	%mm
L_ext =	
135.9084	
we can calculate the actual extension of	the spring
» L_unstretched = 75;	%mm

$x \perp$ unstretoned = 7.5,	/011111
» L_stretch = L_ext - L_unstretched	%mm
L_stretch =	
60.9084	
and the spring force, F _{spring} .	
» k_spring = 600;	%N/m
» F_spring = k_spring * L_stretch / 1000	%Newtons
F_spring =	
36 5450	

Then,

Next, we calculate the x and y components of the spring force, using the angle from the positive x axis (not just 28°) so that the direction of the force is accounted for.

» alpha = (180 - 28) * deg2rad;	%angle from +x axis
<pre>» Fsp_x = F_spring * cos(alpha)</pre>	%Newtons
Fsp_x =	
-32.2674	

» Fsp_y = F_spring * sin(alpha)
Fsp_y =
17.1569

At equilibrium the sum of the moments at A must be zero. We can use this to solve for the applied force, F.

%Newtons

» F = -(abs(Fsp_x) * 16 + Fsp_y * 120) / 150 %Newtons
F =
 -17.1673

Note: The absolute value function was used on F_{sp_x} since the direction of rotation was accounted for as the equilibrium equation was written. Here, counter-clockwise rotation was assumed positive.

The equilibrium relationships for the x and y components of force can be used to determine the reactions at A. First, x-component equilibrium requires that the sum of the x components of force be zero. This relationship is used to solve for A_x .

» A_x = -Fsp_x %Newtons A_x = 32.2674

Finally, the equilibrium relationship for the sum of the y components of force is used to calculate A_y.

» A_y = -Fsp_y – F %Newtons A_y = 0.0105 Annotated MATLAB Script Solution

```
%
                    Spring Support Problem
*****
%Create conversion factor from degrees to radians
deg2rad = pi /180;
%Find the total extended lngth of the spring assembly.
L_ext = 120 / cos( 28 * deg2rad );
                                         %mm
fprintf('\nTotal extended length = %1.0f mm\n', L_ext)
%Calculate the spring's extension.
L unstretched = 75;
                                          %mm
L_stretch = L_ext - L_unstretched;
                                          %mm
fprintf('Spring''s extension = \$1.0f mm \n', L stretch)
%Calculate spring force.
k_{spring} = 600;
                                          %N/m
F_spring = k_spring * L_stretch / 1000;
                                         %Newtons
fprintf('Spring force = %1.1f N\n\n', F_spring)
%Find x and y components of spring force.
alpha = (180 - 28) * deg2rad;
                                          %angle from +x axis
Fsp_x = F_spring * cos(alpha);
                                         %Newtons
Fsp_y = F_spring * sin(alpha);
                                          %Newtons
fprintf('x-component of spring force = %1.1f N', Fsp_x)
fprintf('\t<= acting in -x direction\n')</pre>
fprintf('y-component of spring force = %1.1f N\n', Fsp_y)
%Use the sum of the moments about A to find applied force F
%We know => 16 |Fsp_x| + 120 Fsp_y+ 150 F = 0
%Solving for F
F = -(abs(Fsp x) * 16 + Fsp y * 120) / 150; %Newtons
fprintf('Applied force = %1.1f N', F)
fprintf('\t<= acting to cause clockwise rotation\n\n')</pre>
%Use x and y component force balences to solve for the reactions at A
We know => A_x + Fsp_x = 0
%Solving for A_x
A_x = -Fsp_x;
                                          %Newtons
fprintf('A_x = %1.1f N', A_x)
fprintf('\t<= acting in +x direction\n')</pre>
We know => A_y + Fsp_y + F = 0
%Solving for A_y
A_y = -Fsp_y - F;
                                          %Newtons
fprintf('A_y = \$1.1f N \ A_y)
```