
Equilibrium of a Particle, Free-Body Diagrams 
Ref: Hibbeler § 3.3, Bedford & Fowler: Statics § 3.2-3.3 

 

When a body is either not moving (zero velocity), or moving at a constant velocity (speed and 
direction), the sum of the external forces on the body is zero, and the body is said to be in equilibrium. 
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or, for two-dimensional equilibrium, 
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The picture showing the external forces acting on the object is called a free-body diagram. A free-
body diagram is used to help solve problems both in statics and dynamics. 

 

 

Example: Forces on Traffic Light Suspension Cables 
Three traffic lights have been suspended between two poles at an intersection, as shown below. 
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Each of the three lights has a mass of 18 kg (approx. 40 lb). (Assume zero mass cables.) The tension 
in the cables has been adjusted such that the lights at points B and C are at the same height, and 
cable section AB is at an angle of 5° from horizontal. 

a. Determine the downward force at points B, C, and D due to the mass of the lights. 

b. Draw a free-body diagram at point B, and use it to find the vertical and horizontal components 
of force in cable AB. 

c. Repeat part b. for the other lights, determining the force components in each cable section, 
and the angle of each cable section (measured from the +x direction). 

 

Solution: Part a. 
The mass of each traffic light is being acted on by gravity, so the force is calculated as 

gmFy =  

In MATLAB, this calculation looks like this: 
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» m = 18;                 %Mass of light (kg) 

» g = 9.8;                 %Gravitational constant (m/s^2) 

» F_grav = -m * g 

F_grav = 

 -176.4000 

So the downward force exerted by each traffic light is 176.4 N. The minus sign has been included to 
show that the force is downward, i.e., in the –y direction. 

If the lights are not moving up or down, the cable must apply an equal but oppositely directed force on 
the light, since the vertical force components must sum to zero if the body is in equilibrium. 

 

Part b. – Free-Body Diagram for Light at B 
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Since cable section BC is horizontal, there is no vertical component of force in cable section BC. So, 
all of the weight of the traffic light at B must be carried by cable AB, more specifically, by the vertical 
component of force in cable AB. 

» F_ABy = -F_grav 

F_ABy = 

  176.4000 

The horizontal component of force in cable AB can be determined using the specified angle (cable AB 
is 5° from horizontal, or 175° from +x). 

F_ABx = F_ABy / tan( 175 * pi/180) 

F_ABx = 

 -2016.3000 

The horizontal component is 2016 N (about 450 lbf) acting in the –x direction.  

The force acting in the direction of the cable has a magnitude of 2024 N. 

» F_AB  = sqrt( F_ABx ^ 2 + F_ABy ^ 2 ) 

F_AB = 

  2024.0000 

Finally, if the light at point B is not moving to the left or right, the sum of the horizontal forces acting on 
point B must be zero, so the horizontal component of force in section BC is +2016 N. Since there is 
no vertical component of force in section BC, this is also the total force on section BC at point B. 

» F_BCx = -F_ABx;   % Since the sum of the x-components of force is zero 

» F_BCy = 0; 

» F_BC  = sqrt( F_BCx ^ 2 + F_BCy ^ 2 ) 

F_BC = 

  2016.3000 



 

Part b. – Free-Body Diagram for Light at C 

CFBC = 2016.3 N

FCD
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The free body diagram for the light at point C is constructed using the following concepts: 

•  If the light at point C is not moving left or right, then the horizontal component of force FCD 
must be +2016 N. 

•  If the light at point C is not moving up or down, then the vertical component of force FCD must 
be +176 N. 

This is essentially the same as the free-body diagram at point B, just flipped left to right. So the 
magnitude of force FCD is 2024 N, and acts at 5° from horizontal. This can be verified as follows: 

» F_CDx = -F_BCx 

F_CDx = 

  2016.3000 

» F_CDy = -F_grav 

F_CDy = 

  176.4000 

» F_CD  = sqrt( F_CDx ^ 2 + F_CDy ^ 2 ) 

F_CD = 

  2024.0000 

» theta_CD = atan(F_CDy/F_CDx) * 180/pi 

theta_CD = 

    5.0000 

Note: The value of FBC used in this section is –2016.3 N, as shown in the free-body diagram for point 
C. See the Annotated MATLAB Script Solution to see how this sign change is handled for the 
complete problem solution. 

 

Part b. – Free-Body Diagram for Light at D 

FCD = 2024 N
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The weight of the traffic light at point D exerts a downward force, Fgrav, of 176.4 N. In addition, force 
FCD, acting on point D, has a vertical component of 176.4 N, also acting downward. If the light at point 
D is not moving up or down, then these downward forces must be counterbalanced by the vertical 
component of force FDE. 



» F_DEy = -( F_grav + F_CDy ) 

F_DEy = 

  352.8000 

The horizontal component of force FDE must be equal to –FCD_x if the light at point D is to be 
stationary. 

F_DEx = 

  2016.3000 

Once the horizontal and vertical components are known, the angle (in degrees) of cable DE can be 
determined. 

» theta_DE = atan(F_DEy/F_DEx) * 180/pi 

theta_DE = 

    9.9250 

 



Annotated MATLAB Script Solution 

%Traffic Light Suspension Cable
%
% Part a.
m = 18; %Mass of light (kg)
g = 9.8; %Gravitational constant (m/s^2)
F_grav = -m * g; %Force exerted by traffic light
fprintf('Part a.\n')
fprintf('m = %8.1f kg\t\t g = %8.1f m/s^2\n',m,g);
fprintf('F_grav = %8.2f N\n\n',F_grav);

% Part b. - Light at Point B
F_ABy = -F_grav; %Vertical component of AB
F_ABx = F_ABy / tan( 175 * pi/180 ); %Horizontal component of AB
F_AB = sqrt( F_ABx ^ 2 + F_ABy ^ 2 ); %Magnitude of AB
fprintf('Part b. - Light at Point B\n')
fprintf('F_ABx = %+8.1f N\t\t F_ABy = %+8.1f N\n',F_ABx,F_ABy)
fprintf('F_AB = %+8.1f N\n\n',F_AB);

F_BCx = -F_ABx; %Horizontal component of BC
F_BCy = 0; %Vertical component of BC
F_BC = sqrt( F_BCx ^ 2 + F_BCy ^ 2 ); %Magnitude of BC
fprintf('F_BCx = %+8.1f N\t\t F_BCy = %+8.1f N\n',F_ABx,F_ABy)
fprintf('F_BC = %+8.1f N\n\n',F_BC);

% Part b. - Light at Point C
F_BCx = -F_BCx; %F_BC acting on point C is in the -x direction
F_CDx = -F_BCx; %Horizontal component of CD
F_CDy = -F_grav; %Vertical component of CD
F_CD = sqrt( F_CDx ^ 2 + F_CDy ^ 2 ); %Magnitude of CD
theta_CD = atan(F_CDy/F_CDx) * 180/pi; %Angle from horizontal force acts
fprintf('Part b. - Light at Point C\n')
fprintf('F_CDx = %+8.1f N\t\t F_CDy = %+8.1f N\n',F_CDx,F_CDy)
fprintf('F_CD = %+8.1f N\t\t theta_CD = %+8.3f deg\n\n',F_CD,theta_CD);

% Part b. - Light at Point D
F_CDx = -F_CDx; %F_CD acting on point d is in the -x direction
F_CDy = -F_CDy; %F_CD acting on point C is in the -y direction
F_DEy = -( F_grav + F_CDy ); %Vertical component of DE
F_DEx = -F_CDx; %Horizontal component of DE
F_DE = sqrt( F_DEx ^ 2 + F_DEy ^ 2 ); %Magnitude of DE
theta_DE = atan(F_DEy/F_DEx) * 180/pi; %Angle from horizontal force acts
fprintf('Part b. - Light at Point D\n')
fprintf('F_DEx = %+8.1f N\t\t F_DEy = %+8.1f N\n',F_DEx,F_DEy)
fprintf('F_DE = %+8.1f N\t\t theta_DE = %+8.3f deg\n\n',F_DE,theta_DE);

 


