A Generic Declarative Diagnoser for Normal
Logic Programs

Lunjin Lu

The University of Birmingham, Birmingham B15 2TT, U.K.

Abstract. In this paper we develop a generic declarative diagnoser for
normal logic programs that is based on tree search. The soundness and
the completeness of the diagnoser are proved. The diagnoser is generic in
that it can be used with different search strategies such as the bottom-
up, top-down, top-down zooming and divide-and-query strategies in the
literature. The user can specialise the diagnoser by choosing their own
search strategy. The diagnoser also has a smaller search space than dia-
gnosers reported in the literature. This is achieved by using the acquired
part of the intended interpretation of the program to prune the search
space before it is searched.

1 Introduction

An error that makes a program exhibit an unexpected behaviour is called a
bug while the unexpected behaviour that a bug causes is called a bug symp-
tom. After a bug symptom has been found, the programmer has to locate and
identify the bug that causes the bug symptom and correct the bug in order to
obtain the expected program behaviour. The process of locating and identify-
ing the bug that causes a bug symptom is called program diagnosis. A software
tool that supports such a process is called a diagnoser. Declarative program
diagnosis is an interactive process whereby a declarative diagnoser obtains the
intended interpretation of the program from an oracle, usually the programmer,
and compares the intended interpretation with the actual interpretation of the
program. There has been much research into declarative logic program diagnosis
[4, 8, 11, 13, 18, 19, 22].

A buggy logic program may exhibit many kinds of bug symptom. It may
produce a wrong answer, fail to produce a correct answer, fall into looping, call
procedures with wrong types of arguments, or violate the safe rule of negation
as failure, etc. This paper is concerned with the first two kinds of bug symptom.

We assume that readers are familiar with the terminology of logic program-
ming [13]. Let € be the identity substitution and P a logic program. We define
the success set of P as

SS(P)={A]| Ais an atom and ¢ is a computed answer for PU{— A}}

SS(P) possibly contains non-ground atoms and describes the operational beha-
viour of logic programs more precisely than the success set defined in terms of
ground atoms [21]. A model-theoretic counterpart of SS(P) for definite programs
is given in [7].

Definition 1 Let P be a logic program and I an interpretation.

(1) An atom A is an inconsistency symptom of P w.r.i. I if A is invalid in |
and A € SS(P).

(2) An atom A is an insufficiency symptom of P w.r.t. I if A is satisfiable in I
and P finitely fails on A.

Definition 2 Let P be a logic program and I an interpretation.

(1) A clause instance A — W is an inconsistent clause instance of P w.r.t. I if
A — W s an instance of a clause of P and A — W s wnvalid in I.

(2) An atom A is an uncovered atom of P w.r.t. I if A is valid in I and, for every
clause A" — W of P s.1. A and A" unify with m.g.u. 8, W0 is unsatisfiable
m I. An atom A is an incompletely covered atom of P w.r.t. I if an instance
of A is an uncovered atom of P w.r.t. I.

If there is an inconsistency or insufficiency symptom of P w.r.t. I then there
is an inconsistent clause instance of P w.r.t. I or an incompletely covered atom
of P wrt. I[8, 12, 13, 22]. Therefore, given an inconsistency or insufficiency
symptom of P w.r.t. I, a declarative diagnoser for logic programs searches for
an inconsistent clause instance of P w.r.t. I or an incompletely covered atom
of P w.ar.t. I. Many declarative diagnosers for logic programs have been de-
veloped. Shapiro [18, 19] developed the algorithmic debugging method! and ex-
emplified the method through pure Prolog. Ferrand [8] adapted the algorithmic
debugging method for definite logic programs. Lloyd [12, 13] presented a declar-
ative diagnoser for arbitrary logic programs. The diagnoser is a meta-program
which makes it easy to improve its performance by adding control information as
meta-calls. Lloyd [12, 13] obtained a top-down diagnoser by adding control in-
formation. Yan [22] improved the top-down diagnoser by reorganising its control
information.

Each of these declarative diagnosers for logic programs has an inconsistency
diagnosis procedure and an insufficiency diagnosis procedure. The inconsistency
diagnosis procedure 1s called with an inconsistency symptom of P w.r.t. I as
its input and the insufficiency diagnosis procedure is called with an insufficiency
symptom of P w.r.t. I as its input.

The main advantage of using a declarative diagnoser is that the oracle does
not need to know anything about the operational aspect of the program. All
that they need to know about is the intended interpretation of the program. The
quantity of queries may be large and reducing the quantity of queries has been
the main objective of much research into declarative diagnosis [3, 4, 6, 16, 17].
The quantity of queries is dependent on the size of the search space and the
search strategy [13, 19].

In this paper we present a declarative diagnoser for normal programs. A nor-
mal program consists of a set of normal clauses of the form A — Ly, -+ L,

! We use the term diagnosis instead of debugging becanse debugging is a process which
involves bug detection and bug correction as well as bug diagnosis.

where A is an atom and each literal L; is either an atom or the negation of an
atom. The SLDNF resolution procedure is used to implement normal programs.
To ensure the soundness of the SLDNF resolution procedure, a safe computa-
tion rule or a weak safe computation rule must be used. A safe computation
rule always selects a positive literal or a ground negative literal. A weak safe
computation rule always selects a positive literal or a negative literal = A4; s.t.
A; will not be instantiated if P succeeds on A;. The diagnosis of unsafe uses
of negation as failure 1s beyond of the scope of this paper. We assume that no
unsafe use of negation as failure arises during the execution of an inconsistency
or insufficiency symptom of P w.r.t. I.

Our diagnoser has a smaller search space than the diagnosers reported in the
literature. The intended interpretation I of a logic program P consists of the set
of atomic formulae that should be proved by P and the set of the atomic formulae
that should be disproved by P. Whilst program P is being debugged, the oracle
incrementally provides the debugging system with the intended interpretation 7
of P. Therefore, at some stage of debugging, the debugging system has already
acquired part I’ of I. Our declarative diagnoser uses I’ to reduce the size of the
search space.

Given an inconsistency symptom A of P w.r.t. I, our diagnoser first con-
structs a tree called an I-congruent partial proof tree (cpp) for P and A and
then diagnoses P by searching this tree. An I-¢pp for P and A is similar to a
proof tree for P and A [1] except that a leaf of an I-cpp for P and A is an atom
that is valid in I while a leaf of a proof tree for P and A is the atom true.
Because I’ is a part of I, an I’-cpp for P and A is also an I-cpp for P and A.
Therefore, an I'-cpp for P and A can be used where an I-cpp for P and A is
required. Whilst an I’-cpp tree for P and A is being constructed it is not neces-
sary to query the oracle because I’ has already been known to the debugging
system. An I'-cpp for P and A is in size smaller than or equal to a proof tree
for P and A because an I’-cpp for P and A may contain only one node for an
atom that is valid in I’ while a proof tree for P and A has a subtree for the same
atom. When I’ is empty, an I'-cpp for P and A is a proof tree for P and A. As
I’ increases during debugging, our diagnoser is able to construct a smaller and
smaller I'-cpp for P and A.

Given an insufficiency symptom A of P w.r.t. I, our diagnoser first constructs
a tree called an I-complete partial SLDNTF tree (c¢ps) for P U {<— A} and then
diagnoses by searching this tree. An I-cps for PU{— A} is similar to an SLDNF
tree for PU{— A} [13] except that a node — ¥ in an SLDNF tree for PU{— A}
has a child node for each goal «— W' that is derived from «— W and P, while a
node — W in an I-cps for PU{<— A} only needs to have a child node for a goal
— W' that is derived from «— W and P s.t. W’ is satisfiable in I. In other words,
if W’ is unsatisfiable in I then node «+ W’ and the subtree rooted at «— W’ can
be removed from an I-c¢ps for PU{« A}. Because I’ is a part of I, an I'-cps for
PU{— A} is also an I-¢psfor P U {— A}. Hence, an I'-cpsfor P U {— A}
can be used where an I-cps for P U {«— A} is needed. The construction of an
I'-cpsfor PU {— A} does not need to query the oracle because I’ has already

been known to the debugging system. An I’-¢ps for PU{«— A} is smaller in size
than an SLDNF tree for P U {<— A} because a node «— W in an SLDNF tree
for P U{— A} usually has more child nodes than in an I'-¢ps for P U {— A}.
When I’ is empty, an I'-cps for PU{— A} is an SLDNF tree for PU{— A}. As
I’ increases during debugging, our diagnoser is able to construct a smaller and
smaller I'-cps for P U {— A}.

Our diagnoser is generic in that different tree search strategies can be used
with the diagnoser and the user can specialise the diagnoser by specifying the
search strategy to be used.

Section 2 formally introduces the concepts of I-cpp and I-cps and establishes
that they are sufficient for the purpose of diagnosis, that is, an inconsistency
symptom A of P w.r.t. I can be diagnosed by searching an I-cpp for P and A,
and an insufficiency symptom A of P w.r.t. I can be diagnosed by searching an
I-cps for P U {— A}. Section 3 presents the diagnoser and proves its sound-
ness and completeness. In section 4, we show the generality of our declarative
diagnoser and compares the diagnoser with the declarative diagnosers in the
literature with respect to the size of the search space. Section 5 concludes the
paper and points to some further work on our declarative diagnoser.

2 Search Space

This section formally introduces the notions of I-¢pp and I-e¢ps and shows that
an inconsistency symptom A of P w.r.t. I can be diagnosed by searching an
I-cpp for P and A and an insufficiency symptom A of P w.r.t. I can be diagnosed
by searching an I-cps for P U {— A}.

Let T be a tree, r the root of T', and v a node of T'. v is a branch node if
v is neither the root of T nor a leaf of T. The height of T, written as A(T), is
the length of the longest path of T n(T) denotes the number of nodes of T.
The level of v in T, denoted by I(v,T), is the length of the path from r to v. T,
denotes the sub-tree of 71" that is rooted at v. Notice that 7' = 7,..

Definition 3 An ordered tree T' is a literal-labelled tree if each node of T is a
literal. Let L be a node of T and Ly, Lo, - - -, Ly the children of L in that order.

We say that L «— L1, Lo, -+, Ly 1s the root implication of 77 and write 1t as
RI(T, L).

Definition 4 Let P be a normal program, I an interpretation and A an atom.

(1) A partial proof tree T' for P and A is a literal-labelled tree satisfying the fol-
lowing two conditions. (i) The root of T is A. (ii) For each non-leaf node I’ of
T, either RI(T,L') is an instance of a clause of P or
RI(T,L') = (A’ — true) where A’ is an atom on which P finitely fails.

(2) T is a proof tree for P and A if T is a partial proof tree for P and A, and
every leaf node of T"is true.

(3) A partial proof tree T for P and A is an I-¢pp for P and A if every leaf node
of T is a literal that is valid in 7.

A proof tree for P and A is an I-cpp for P and A because true is valid in I.
This definition of a proof tree is similar to that of [1]. The leaves of a proof tree
defined in [1] are instances of unit clauses of P while they are true according to
the above definition that treats a unit clause as having body true.

Example 1 Let P be the following buggy quick sort program. P has a bug that
is indicated by a comment.

gs([XIL],L0):- pt(L,X,L1,L2),9qs(L1,L3),qs(L2,L4),ap([XIL3],L4,L0).
%ap(L3, [X|L4],L0)
qs([1,01).

pt([XIL1,Y,L1, [XIL2]):- Y=<X,pt(L,Y,L1,L2).
pt([XIL],Y,[XIL1],L2):- ¥>X, pt(L,Y,L1,L2).
pt(01,X,01,01).

ap([XIL11,L2, [XIL3]):- ap(L1,L2,L3).
ap([],L,L).

Let the intended interpretation I be as usual. ¢s([2, 3, 1],[2, 1, 3]) is an inconsist-
ency symptom of P w.r.t. I. Suppose that the acquired part I’ of I consists of
the knowledge of built-in predicates. Then the following is an I’-¢pp for P and
95([2,3,1],[2,1,3]) and hence an I-cpp for P and ¢s([2,3,1],[2, 1, 3]).

qs([2,3,1]1,[2,1,3])————-———-————————- | (1)
[--pt([3,11,2,[11,[31) (2) |--qs([3],[3]1) (18)
| 1--2=<3 (3) [1--pt(01,3,00,0) (19)
| 1--pt([11,2,[11,[1) (&) | | |--true (20)
| [--2>1 (5) [I--gs(01,ID) (21)
| [--pt(01,2,01,00) (&) | | |--true (22)
I | -—true (7 [I--gs(01,ID) (23)
[-—qs([1],[1]1) (8) | | |--true (24)
[-—-pt(01,1,01,00) (9) | |--ap([3]1,01,[3]) (28)
| |--true (10) I |-—ap([1,01,01) (26)
[--qs([]1,[1) (11) I [-—true (27)
| |--true (12) [--ap([2,1],[3],[2,1,3]) (28)
l--qs([1, 1) (13) [--ap([1],[3]1,[1,3]1) (29)
| |--true (14) |-—ap([1,[3],031) (30)
[--ap([1],], [11) (15) |--true (31)
|-—ap([1,01,01) (16)
| ——true (17

The above tree is smaller than a proof tree for P and ¢s([2, 3, 1],[2, 1, 3]) because
in a proof tree for P and ¢s([2,3,1],[2,1,3]) each of node (3) (labelled with
2 =< 3) and node (5) (labelled with 2 > 1) has a child labelled with true.

Example 2 Let P and [be the same as in example 1. Suppose that at some
stage during debugging, the acquired part I’ of I consists of the knowledge

of built-in predicates and the knowledge that ¢s([X],[X]) is valid in T for all
possible X. Then removing nodes 9-17 and 19-27 from the tree in example 1
will result in an I'-epp for P and ¢s([2,3,1],[2,1,3]) and hence an I-cpp for P
and ¢s([2,3,1],[2,1,3]). This tree and the tree in example 1 are both I-cpp for
P and ¢s([2,3,1],[2,1,3]). But the former is much smaller than the latter. This
example shows that, given the same inconsistency symptom A of P w.r.t. I, our
diagnoser is able to construct a smaller and smaller I-cpp for P and A as I’
increases during debugging.

Lemma 1 Let P be a normal program, I an interpretation, A an atom that s
invalid in I, and T an I-cpp for P and A. Then there is a node L' of T s.1.
RI(T, L") is invalid I. Purthermore, either RI(T, L") is an inconsistent clause
instance of P w.r.t. I, or RI(T, L) = (0 A’ — true) and A’ is an insufficiency
symptom of P w.r.t. I. [|

Lemma 1 states that an inconsistency symptom A of P w.r.t. I can be
diagnosed by searching an I-cpp T for P and A to find a node I’ of T s.t.
C = RI(T, L) is invalid in I. Either C is an inconsistent clause instance of P

wrt. I, or C = (2A — true) s.t. A" is an insufficiency symptom of P w.r.t. I.

Definition 5 An ordered tree T' is a goal-labelled tree if each node of T is a
goal.

Definition 6 Let P be a normal program, R a computation rule, G and G’
normal goals, and [an interpretation.

(1) We say that G’ is derived from G and P via R and write G PR Gt
G=— 1Ly, -, Li- -, Ly, L is the selected literal of G by R, and either (i)
L; 18 positive, there is a clause A — W of P s.t. L; and A unify with a m.g.u.
0, and G =— (L1, -+, Li—1, W, Liy1, -+, Lm)0, or (ii) L; is negative with
L; = = A;, P finitely fails on A;, and G' =— (L1, -+, Li—1, Liy1, -+, Lm).

(2) C(G, P, R) is the set of all the goals that are derived from G and P via R,
that is, C(G, P, R) = {G"|G 2£ ¢},

(3) E(G, P, R,I) is the subset of C(G, P, R) s.t. for each goal G =— W' in
E(G,P,R,I), W is satisfiable in I.

E(G,P,R,I)={—W'|(— W' €C(G, P,R)) and W' is satisfiable in I}

Definition 7 Let P be a normal program, R a computation rule, G a normal
goal, T" a goal-labelled tree s.t. the root of T"is G, and [an interpretation.

(1) T is a partial SLDNF tree for P U{G} via R if any two nodes G and G? of
T s.t. G? is a child of G satisfy G? € C(G*, P, R).

(2) T is an SLDNF tree for P U {G} via R if T is a partial SLDNF tree for
PU{G} via R s.t. if G! is a node of T, then each G? in C(G!, P, R) is also
a node of T and G? is a child of G*.

(3) T is an I-epsfor PU{G} via R if T is a partial SLDNT tree for P U{G}
via R s.t. if G' is a node of T', then each G? in £(G', P, R,) is also a node
of T and G? is a child of G'.

The definition of an SLDNF tree is equivalent to that given in the literature
such as [13]. The notion of an I-cps T for PU{G} via R captures the idea that if
P is correct w.r.t. I, then any successful derivation of PU{G} via R corresponds
to a path from the root of T to a leaf of 7" which is O. It follows from definition 7
that an SLDNF tree for P U {G} via R is an I-¢ps for P U {G} via R for any
I.If A is an insufficiency symptom of P w.r.t. I, then an I-cps for P U {— A}
via a fair computation rule R is a finite tree, and none of its leaves is O because
any derivation of P U {« A} terminated with O corresponds to a proof tree for

P and A6 for some 6.

Example 3 Let P be the following buggy program. The intended interpretation
for d(X,Ys,Zs) is that either X is in list Ys but not in list Zs or X is in list Zs
but not in list Ys. The intended interpretation for m(X,L) is that X is in list L.

d(X,Y¥s,Zs):- m(X,¥s),\+ m(X,Zs). m(X, [X1Xs]).
d(X,Ys,Zs):- m(X,Zs),\+ m(X,Zs). m(X,[YlYs]):- m(X,Ys).
% \+ m(X,Ys)

d(3,[1,2,4],]2,3]) is an insufficiency symptom of P w.r.t. I. Suppose that the ac-
quired part I’ of I is empty. Then the following is an I-cpsfor
P U {— d(3,[1,2,4],[2,3])} via the left-to-right computation rule. — is writ-
ten as *7’. This tree is also an SLDNF tree for P U {— d(3,[1,2,4],[2,3])} via
the left-to-right computation rule.

?d(3,[1,2,4],[2,3]——————————————— I (1
[-?m(3,[1,2,4]),\+m(3,[2,3]) (2) [|-7m(3,[2,31),\+m(3,[2,3]) (6)
[-7m(3, [2,4]1),\+m(3,[2,3]) (3) [-7m(3, [3]1),\+m(3,[2,3]) (7)
[-7m(3,[4]),\+m(3,[2,3]) (4) [-?\+m(3, [2,3]) (8)
[-7m(3, [1),\+m(3,[2,3]) (5) [-7m(3, [1),\+m(3,[2,3]) (9)

Example 4 Let P and I be the same as in example 3.) A =@ is unsatisfiable
in I’ for any and any consistent I’. So, removing nodes 6-9 from the tree in
example 3 will result in an I’-cps for P U {— d(3,[1,2,4],[2,3])} via the left-to-
right computation rule. This tree and the tree in example 3 are both I-¢ps for
PU{—d(3,[1,2,4],[2,3])} via the left-to-right computation rule. But the former
is much smaller than the latter. This example shows that, given the same insuf-
ficiency symptom A of P w.r.t. I, our diagnoser is able to constructs a smaller
and smaller I-cps for P U {— A} via a fixed computation rule as I’ increases
during debugging.

Definition 8 Let [be an interpretation, 7" a goal-labelled tree and «— W a
node of 7. We say «— W is a critical node of T" w.r.t. I if either W 1s satisfiable
in I and «— W is a leaf of T, or W is satisfiable in I and for each child «— W’ of
— W, W’ is unsatisfiable in I.

Lemma 2 Let P be a normal program, G' a normal goal, R a computation rule,
I an interpretation, T an I-cps for PU{G'} via R, then there is a critical node
G of T wrt I. Furthermore, if G =— W =«— Ly,---, Li—1, Li, Lig1,-- -, Ly
with L; being the selected literal of G by R then either (1) L; is a positive literal
and L; is an incompletely covered atom of P w.r.t. I or (2) L; = = A; where A;
1s an atom and A; is an inconsistency symptom of P w.r.t. I. [|

Lemma 2 states that an insufficiency symptom A of P w.r.t. I can be dia-
gnosed by searching an I-cps T for P U {«< A} via a fair computation rule R to
find a critical node G of 7" w.r.t. I. G # O since P finitely fails on A. Let L be
the selected literal L of G by R. Either L 1s an incompletely covered atom of P
w.r.t. I, or L = —A" and A’ is an inconsistency symptom of P w.r.t. I.

3 A generic diagnoser

This section presents our declarative diagnoser for normal programs and proves
its soundness and completeness. This declarative diagnoser will be referred to as
7 and in presented in Edinburgh Prolog [9].

Let T" be a tree and v a node in T'. We use T'—T, to denote the tree resulting
from deleting T,,, the sub-tree rooted at v, from T' and T\T, to denote the tree
resulting from replacing 7, of 7" with a node v.

The inconsistency diagnosis procedure of 7 is inconsistency(+A, —D). When
called with an inconsistency symptom A of P w.r.t. I, inconsistency/2 succeeds
with D being either an inconsistent clause instance of P w.r.t. I or an incom-
pletely covered atom of P w.r.t. I. inconsistency/2 first calls ¢pp/2 to construct
an I-cpp T for P and A. Then inconsistency/2 calls invalid_impl/2 to find a
node L' of T s.t. C'= RI(T, L') is invalid. If C'is an instance of a clause of P,
inconsistency /2 returns with C' as its output. Otherwise C' = (= A’ — true) with
A’ being an insufficiency symptom of P w.r.t. I. In this case, inconsistency /2
calls insuf ficiency /2 to diagnose the insufficiency symptom A’ of P w.r.t. I.
The specification for epp(+A4, =T is that T is an I-cpp for P and A.

inconsistency(A,D) :-—

cpp(4,T),

|
B

invalid_impl(T,C),

invalid_impl(T,C) :-
height(T,1),
root_impl(T,C).
invalid_impl(T,C) :-

(branch_node(T,L),
C=(\+A1:-true) ',

; D=2¢C valid(L)

). -> \’(T,L,T1)

; '%(T,L,T1)
),

|
|
|
|
|
|
—-> insufficiency(41,D) | (
|
|
|
|
I invalid_impl(T1,C).

invalid_impl(+T, —C') succeeds with C' = RI(T,L') being invalid in I for
some node L' of T if T is a literal-labelled tree whose root is invalid in I and
each of whose leaves is valid in I. height(+7, —H) succeeds with h(T) = H.
branch_node(+7,—L) succeeds with L being a branch node of T.
root_impl(+T, —C') succeeds with C being the root implication of T'. valid(+1)
succeeds iff L is valid in I. "%'(+T,+L, —T1) succeeds with T1 = T if L is a
node of T \'(+7T,+L, —T1) succeeds with 71 = T\Tg if L is a node of T

The insufficiency diagnosis procedure of 7 is insuf ficiency(+A4, —D). When
called with an insufficiency symptom A P w.r.t. I, insuf ficiency/2 succeeds
with D being either an inconsistent clause instance of P w.r.t. I or an incom-
pletely covered atom of P w.r.t. I. insuf ficiency/2 first calls ¢ps/2 to construct
an I-cps T for P U {— A}. Then insufficiency/2 calls critical/2 to find a G
node of T s.t. (G is a critical node of T"w.r.t. I. Let L be the selected literal of G
by R. If L is positive, insuf ficiency /2 returns with L as its output. Otherwise,
L = = A’ with A’ being an inconsistency symptom of P w.r.t. I. In this case
insuf ficiency/2 calls inconsistency/2 to diagnose inconsistency symptom A’
of P wr.t. I. eps(+G, =T) succeeds with T' being an I-¢ps for P U {G} via a
fixed fair computation rule R. selected(+G, —L) succeeds with L is the selected
literal of G by R.

insufficiency(A,D) :- critical(T,G) :-
cps(’?°(4),T), height(T,0),
v, root(T,G).
critical(T,G), critical(T,G) :-

selected(G,L), \+ height(T,0),

|
|
|
|
|
(| non_root(T,’?°(W)),
L=\+A1 [',
—-> inconsistency(41,D) | (
; D=L I satisfiable(W)
). | => % (T,’7° (W) ,T1)
| ;0 2=2(T,’?(W),T1)
|),
| critical(T1,G).

eritical(+T, —G) succeeds with G being a critical node of 7' w.r.t. I if T
is a goal-labelled tree s.t. W is satisfiable in I where «— W is the root of 7.
root(+T, —(G) succeeds with G being the root of T. non_root(+T, —G) succeeds
with GG being a node of T other than the root of T. -(+7T, +G, —T'1) succeeds
with T1 = T—Tg if G is anode T'. satis fiable(+W) succeeds iff W is satisfiable
in 1.

At a certain stage of diagnosis, I’ embodies the knowledge about the intended
interpretation / that have been acquired by the diagnoser. When the diagnoser
constructs an I-cpp (or an I-cps), it uses I’ to decide if a literal L is known to
be valid in I (or if a conjunction W of literals is known to be unsatisfiable in 7).
These judgements are made by a set of rules based on I’ and other knowledge
that the diagnoser have acquired. One example rule is that A is valid in 7 if A
is an instance of another atom that is valid in 7.

It is possible that the validity of a literal L in I or the unsatisfiability of a
conjunction W of literals in I may not be detected by the set of rules at a certain
stage either becuase I’ does not have enough information or because the set of
rules are not complete. This does not affect the soundness and the completeness
of m that are given later.

Example 5 We now show a session of using diagnoser 7. The program is a
buggy quick sort program. When a query is imposed on the oracle by
satisfiable /1 or valid/1, variables in the atom concerned are replaced with gen-
erated mnemonic names that should be understood to be local to the query. The
top-down zooming strategy [14] is used to search both I-cpp and I-cps . Before
the diagnosis session begins, the acquired part I’ of the intended interpretation
I contains the following.

— calls to ap/3 or built-in procedures do not result in any bug symptom.

— ¢s([X],[X]) is valid in T.

The definitions for ¢s/2 and ap/3 are the same as those in example 1 and pt/4
is defined as follows.

pt([XIL],Y,L1,[XIL2]):- | pt(LXIL],Y,[XIL1],L2):- | pt([],X,01,00).
%Y<X, [Y=<X, %Y>=X, |
pt(L,¥,L1,L2). | pt(L,Y,L1,L2).

?7- qs([2,1]1,L).

|

L = [2,1]

yes

| ?- incomsistency(qs([2,1],[2,1]1),D).

Is qs([1,[1) valid? y. Is pt([1],2,[1,[1]) valid? n.

Is pt(01,2,00,0) valid? y.

D = (pt([11,2,00,011) :- pt([1,2,00,0))

yes

| ?- % the user corrects the bug in the 1st clause for pt/4

| »- gs([2,1],L).

no

| ?- insufficiency(qs([2,1],L),D).

Is pt([1],2,4,B) satisfiable? y. A =7 [1]. B=721[].

D = pt([1],2,_12938,_12939)

yes

| ?- % the user corrects the bug in the 2nd clause for pt/4

| 7= qs([2,1],L).

L = [2,1]

yes

| ?- incomsistency(qs([2,1],[2,1]1),D).

D = (gs([2,11,[2,1]1) :-
pt([11,2,[11,01),9s([1]1,[1]1),qs (0], 1) ,ap([2,1],0]1,[2,1]))

yes

| ?- % the user corrects the bug in the 1st clause for gs/2.
| 7= qs([2,1],L).
L = [1,2]
yes

| 7=

The following theorems establish the soundness and the completeness of 7.

Theorem 1 (Soundness of) Lel P be a normal program, A an atom and I
an niterpretation.

(1) If A is an inconsistency symptom of P w.r.t. I and inconsistency(A, D) €
SS(x), then D is either an inconsistent clause instance of P w.r.t. I, or an
mcompletely covered atom of P w.r.t. 1.

(2) If A is an insufficiency symptom of P w.r.t. I and insuf ficiency(A, D) €
SS(x), then D is either an inconsistent clause instance of P w.r.t. I, or an
mcompletely covered atom of P w.r.t. 1. [|

Theorem 2 (Completeness of) Let P be a normal program, A an atom
and I an interpretation.

(1) If A is an inconsistency symptom of P w.r.t. I, then there is some D s.t.
D s etther an inconsistent clause instance of P w.r.t. I, or an incompletely
covered atom D of P w.r.t. I and inconsistency(A, D) € SS(w).

(2) If A is an insufficiency symptom of P w.r.t. I, then there is some D s.t. D
1s either an inconsistent clause instance of P w.r.t. I, or an incompletely
covered atom D of P w.r.t. I and insuf ficiency(A, D) € SS(w). |

4 Related work

This section compares our diagnoser with the diagnosers reported in the literat-
ure w.r.t. the search strategy and the search space, two major factors that affect
the quantity of queries.

4.1 Generality of «

Since procedure invalid_impl/2 uses only the first branch node of a literal-
labelled tree enumerated by branch_node/2, we can implement branch_node /2
as the following without compromising the soundness and the completeness of
.

branch_node(T,N):- branch_node_1(T,N).

where the specification for branch_node_1/2 is that branch_node_1(T, N') suc-
ceeds once and only once with N being a branch node of T'. The different im-
plementations of branch_node_1/2 will result in different performances of the
inconsistency diagnosis procedure inconsistency/2 in terms of the quantity of
queries.

A top-down inconsistency diagnosis procedure based on tree search [4, 14, 20]
can be obtained by using an implementation of
branch_node_1/2 s.t. branch_node_1(T, N) succeeds with N being a child of
the root of 7. A bottom-up inconsistency diagnosis procedure based on tree
search [20] can be obtained by using an implementation of branch_node_1/2 s.t.
branch_node_1(T, N) succeeds with N being the parent node of a leaf node of
T. The divide-and-query inconsistency diagnosis procedure [18, 19] can be ob-
tained through an implementation of branch_node_1/2 s.t. branch_node_1(T, N)
succeeds with N being a node of T' s.t. [n(Ty) — n(T)/2| < |n(Ty+) — n(T)/2]
for any other node N’ of T'. The top-down zooming inconsistency diagnosis pro-
cedure [14] can be obtained by using an implementation of branch_node_1/2 s.t.
branch_node_1(T, N) succeeds with N being a node of T satisfying either (1)
N is a node of T' other than the root of T, and (2) N and the root of T have
the same predicate name, and (3) N is not subordinate to any node of T that
satisfies (1) and (2), or N is a child of the root of T when no node of T satisfies
(1) and (2).

Similarly, we can implement non_root/2 as the following without affecting
the soundness and the completeness of .

non_root(T,N):- non_root_1(T,N).

where the specification for non_root_1/2 is that non_root_1(T, N') succeeds once
and only once s.t. NV is a node of T" other than the root node of T'. The differ-
ent implementations of non_root_1/2 will result in different performances of the
insufficiency diagnosis procedure insuf ficiency/2 in terms of the quantity of
queries.

A top-down insufficiency diagnosis procedure can be obtained by using an
implementation of non_root_1/2 s.t. non_root_1(T, N) succeeds with N being
a child of the root of 7. A bottom-up insufficiency diagnosis procedure can
be obtained by using an implementation of non_root_1/2 s.t. non_root_1(T, N)
succeeds with NV being a leaf node of T

insuf ficiency/2 can be specialised resulting in a divide-and-query insuf-
ficiency diagnosis procedure through an implementation of non_root_1/2 s.t.
non_root_1(T,N) succeeds with N being a mnode of T s.t.
[n(Tw) — n(T)/2] < [n(Tn+) — n(T)/2| for any other node N’ of T'.

The formulation of 7 not only enables standard tree search strategies such as
top-down, bottom-up and divide-and-query to be used, but also allows more flex-
ible strategies to be used as long as these strategies conform to the specifications
for branch_node_1/2 and non_root_1(T, N)). This provides us with a platform for
evaluating various strategies as well as tailoring the declarative diagnoser to a
user who prefers a particular search strategy.

4.2 Search space

The search space of a declarative diagnoser is one of the major factors that affect
the quantity of queries. We briefly compare the search space of our declarative
diagnoser 7 with the search spaces of the declarative diagnosers in the literature.

Suppose that A is the inconsistency symptom of P w.r.t. I to be diagnosed.
An inconsistency diagnosis procedure based on tree search [4, 14, 18, 19, 20],
including the divide-and-query diagnoser [18, 19], is a specialised version of
inconsistency/2. These inconsistency diagnosis procedures search for an incon-
sistent clause instance of P w.r.t. I in the set of all the clause instances that are
used in one successful derivation of PU{« A}, that is, the clause instances that
are used in one proof tree for P and A. The search space of inconsistency/2 is
the set of all the clause instances that are used in one I-cpp for P and A. Because
an I-cpp for P and A is smaller than a proof tree for P and A, inconsistency/2
has a smaller search space.

There are inconsistency diagnosis procedures that are not based on tree
search [8, 12, 13, 18, 19, 22]. Such inconsistency diagnosis procedures search
a larger space than inconsistency /2. We exemplify this through the single step-
ping inconsistency diagnosis procedure [18, 19]. The single stepping inconsistency
diagnosis procedure simulates Prolog’s execution of A. Whenever a call A’ has
been executed successfully with a computed answer 6, the oracle is asked if A’6 is
valid in I. If A’8 is valid in I, the single stepping inconsistency diagnosis proced-
ure continues to simulate Prolog’s execution of the remaining calls. Otherwise,
A'f s invalidin I. Let C = H' — L{, L}, .-+, Ll be the clause instance used to
solve A’ (LY, LY, -+ L1)0 is already known to be valid in I. Therefore, C0 is
an inconsistent clause instance of P w.r.t. I. Let R’ be the left-to-right compu-
tation rule. The single stepping inconsistency diagnosis procedure searches for
an inconsistent clause instance of P w.r.t. I in the set of all the clause instances
used in the first successful SLDNF derivation of P U {— A} via R’ and all the
clause instances used in all the unsuccessful SLDNF derivations of P U {— A}
via R/ that are previous to the successful SLDNF derivation of PU{— A}. The
other inconsistency diagnosis procedures that are not based on tree search can
be shown to have larger spaces than inconsistency/2 as well.

Suppose that A is the insufficiency symptom of P w.r.t. I to be diagnosed.
insuf ficiency/2 searches for an incompletely covered atom of P w.r.t. I in the
set of all the selected atoms of all the nodes of an I-cps for PU{— A} via a fixed
computation rule R. The search space of the insufficiency diagnosis procedures
presented in [4, 14, 16, 17] is the set of all the selected atoms of all the nodes of
a SLDNF tree for P U {— A}. Because an I-cps for P U {— A} is smaller than
a SLDNF tree for PU{— A}, insuf ficiency/2 has a smaller search space than
these insufficiency diagnosis procedures.

The insufficiency diagnosis procedures presented in [8, 12, 13, 22] have larger
search spaces than insuf ficiency /2 because, given an insufficiency symptom A
of P w.r.t. I, their search spaces are larger than the set of all the selected atoms
of all the nodes of a SLDNF tree for P U {— A}. See [15] for a detailed analysis
of the search spaces of the insufficiency diagnosis procedures in the literature.

4.3 Search space pruning versus oracle automation

The objective of reducing the quantity of queries has also been pursued by fully
or partly automating the oracle. Diagnosers in [2, 6] use a full specification. A full

specification makes i1t possible to completely avoid querying the user because any
query about the intended interpretation / can be answered by using the specific-
ation. Diagnosers in [3, 4, 10] use assertions about the intended interpretation
I to answer queries. Whenever a query is necessary, these diagnosers will try
to answer the query by using only the assertions. Those queries that cannot be
answered this way are imposed on the oracle. The assertions are descriptions of
the acquired part I’ of the intended interpretation I.

Given an inconsistency symptom A of P w.r.t. I, our diagnoser constructs
an I-cpp for P and A using I’. The effect is equivalent to pruning a proof tree
for P and A before it is searched. Similarly, given an insufficiency symptom A of
P w.r.t. I, our diagnoser constructs an I-cps for PU{— A} using I’. The effect
is equivalent to pruning a SLDNF tree for P U {— A} before it is searched.

Using I’ to prune the search space before it is searched rather than to answer
queries makes sense. Firstly, a smaller search space means a smaller upper bound
for the quantity of queries. See [13] for a detailed analysis for inconsistency dia-
gnosis procedures. Secondly, given an inconsistency symptom A of P w.r.t. I, if
a proof tree for P and A is searched, then a search strategy may select a node
L and query the oracle about the validity of L if the validity of I cannot be
decided by using I’. If L is subordinate to another node L’ in the proof tree s.t.
L’ is valid in I’, then an I-cpp for P and A that is constructed using I’ will not
contain node L because L’ is valid in I’. Therefore, this query can be spared. A
similar argument applies to insufficiency diagnosis. This does not apply to the
top-down search strategy. However, the top-down strategy may not be either the
optimal strategy for the diagnosis problem at hand or the strategy preferred by
the user. We share with [5] the opinion that the user should be allowed to choose
their own strategy.

5 Conclusion

We have presented the generic declarative diagnoser m for normal logic programs
and established its soundness and its completeness. 7 is generic in the sense that
it can be used with various tree search strategies. # has a smaller search space
than the declarative diagnosers in the literature when diagnosing an inconsist-
ency or insufficiency symptom of P w.r.t. I.

References

1. P. Deransart. Proofs of Declarative Properties of Logic Programs. In J.Diaz and
F.Orejas, editors, Proceedings of International Joint Conference on TAPSOFT’89,
pages 207-226, Barcelona, Spain, March 1989.

2. N. Dershowitz and Y.-J. Lee. Deductive Debugging. In Proceedings of 1987 Sym-
posium of Logic Programming, pages 298-306. The IEEE Computer Society Press,
1987.

3. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The Use of Assertions in
Algorithmic Debugging. In ICOT, editor, The Proceedings of the International
Conference on Fifth Generation Computer Systems. ICOT, 1988.

4. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic Debugging with
Assertions. In Harvey Abramson and M.H. Rogers, editors, Meta- Programming in
Logic Programming, pages 502—-521. The MIT Press, 1989.

5. M. Ducassé. Opium™, a Meta-Debugger for Prolog. In Y. Kodratoff, editor, Pro-
ceedings of the eighth ECAI pages 272-277, Minich, August 1-5 1988. Pitman.

6. A. Edman and S.-A. Tarnlund. Mechanization of an Oracle in a Debugging Sys-
tem. In Proceedings of the FEighth International Joint Conference on Artificial
Intelligence, volume 2, pages 553-555, Karlsruhe, West Germany, August 1983.

7. M. Falaschi, G. Levi, and C. Palamidessi. Declarative Modelling of the Opera-
tional Behavior of Logic Programs. Theoretical Computer Science, 69:289-318,
1989.

8. G. Ferrand. Error Diagnosis in Logic Programming, an Adaptation of E.Y. Sha-
piro’s method. The Journal of Logic Programming, 4(3):177-198, 1987.

9. A.M.J. Hutching, D.L. Bowen, L. Byrd, PW.H. Chung, F.C.N. Pereira, L.M.
Pereira, R.Rae, and D.H.D. Warren. Edinburgh Prolog (the new implementation)
user’s manual. Al Applications Institute, University of Edinburgh, 8 October 1986.

10. T. Kanamori, T. Kawamura, M. Maeji, and K.Horiuchi. Logical Program Dia-
gnosis from Specifications. ICOT Technical Report TR-447, March 1989.

11. Y. Lichtenstein and E. Shapiro. Abstract Algorithm Debugging. In R.A. Kowalski
and K.A. Bowen, editors, Proceedings of the fifth International Conference and
Symposium on Logic Programming, pages 512-531. The MIT Press, 1988.

12. J.W. Lloyd. Declarative Error Diagnosis. New Generation Computing, 5(2):133—
154, 1987.

13. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

14. M. Maeji and T. Kanamori. Top-Down Zooming Diagnosis of Logic Programs.
ICOT Technical Report TR-290, August 1987.

15. L. Naish. Declarative Diagnosis of Missing Answers. Technical Report 88/9 (Re-
vised May 1991), Department of computer science, The University of Melbourne,
May 1991.

16. L.M. Pereira. Rational Debugging in Logic Programming. In E. Shapiro, editor,
Proceedings of the 3rd International Logic Programming Conference, pages 203—
210. Springer Verlag, 1986. Lecture Notes in Computer Science no. 225.

17. L.M. Pereira and M. Calejo. A Framework for Prolog Debugging. In R.A. Kowalski
and K.A. Bowen, editors, Proceedings of the fifth International Conference and
Symposium on Logic Programming, pages 481-495. The MIT Press, 1988.

18. E. Shapiro. Algorithmic Program Diagnosis. In ACM Conference Record of the
ninth annual ACM Symposium on Principles of Programming Languages, pages
299-308, Albuquerque, New Mexico, Jan. 25-27 1982.

19. E. Shapiro. Algorithmic Debugging. The MIT Press, 1983.

20. L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

21. M.H. van Emden and R.A. Kowalski. The Semantics of Predicate Logic as a
Programming Language. Artificial Intelligence, 23(10):733-742, 1976.

22. S.Y. Yan. Foundations of Declarative Debugging in Arbitrary Logic Programming.
International Journal of Man Machine Studies, 32:215-232, 1990.

This article was processed using the IANTRpX macro package with LLNCS style

