
A Generic Declarative Diagnoser for Normal
Logic Programs

Lunjin Lu

The University of Birmingham� Birmingham B�� �TT� U�K�

Abstract� In this paper we develop a generic declarative diagnoser for
normal logic programs that is based on tree search� The soundness and
the completeness of the diagnoser are proved� The diagnoser is generic in
that it can be used with di�erent search strategies such as the bottom�
up� top�down� top�down zooming and divide�and�query strategies in the
literature� The user can specialise the diagnoser by choosing their own
search strategy� The diagnoser also has a smaller search space than dia�
gnosers reported in the literature� This is achieved by using the acquired
part of the intended interpretation of the program to prune the search
space before it is searched�

� Introduction

An error that makes a program exhibit an unexpected behaviour is called a
bug while the unexpected behaviour that a bug causes is called a bug symp�
tom� After a bug symptom has been found� the programmer has to locate and
identify the bug that causes the bug symptom and correct the bug in order to
obtain the expected program behaviour� The process of locating and identify�
ing the bug that causes a bug symptom is called program diagnosis� A software
tool that supports such a process is called a diagnoser� Declarative program
diagnosis is an interactive process whereby a declarative diagnoser obtains the
intended interpretation of the program from an oracle� usually the programmer�
and compares the intended interpretation with the actual interpretation of the
program� There has been much research into declarative logic program diagnosis
��� �� ��� ��� ��� ��� 		
�

A buggy logic program may exhibit many kinds of bug symptom� It may
produce a wrong answer� fail to produce a correct answer� fall into looping� call
procedures with wrong types of arguments� or violate the safe rule of negation
as failure� etc� This paper is concerned with the �rst two kinds of bug symptom�

We assume that readers are familiar with the terminology of logic program�
ming ���
� Let � be the identity substitution and P a logic program� We de�ne
the success set of P as

SS�P 
 � fA j A is an atom and � is a computed answer for P � f� Agg

SS�P 
 possibly contains non�ground atoms and describes the operational beha�
viour of logic programs more precisely than the success set de�ned in terms of
ground atoms �	�
� A model�theoretic counterpart of SS�P 
 for de�nite programs
is given in ��
�



De�nition � Let P be a logic program and I an interpretation�

��� An atom A is an inconsistency symptom of P w�r�t� I if A is invalid in I
and A � SS�P 
�

��� An atom A is an insu�ciency symptom of P w�r�t� I if A is satis�able in I
and P �nitely fails on A�

De�nition � Let P be a logic program and I an interpretation�

��� A clause instance A�W is an inconsistent clause instance of P w�r�t� I if
A�W is an instance of a clause of P and A�W is invalid in I�

��� An atom A is an uncovered atom of P w�r�t� I if A is valid in I and� for every
clause A� � W of P s�t� A and A� unify with m�g�u� �� W� is unsatis�able
in I� An atom A is an incompletely covered atom of P w�r�t� I if an instance
of A is an uncovered atom of P w�r�t� I�

If there is an inconsistency or insu�ciency symptom of P w�r�t� I then there
is an inconsistent clause instance of P w�r�t� I or an incompletely covered atom
of P w�r�t� I ��� �	� ��� 		
� Therefore� given an inconsistency or insu�ciency
symptom of P w�r�t� I� a declarative diagnoser for logic programs searches for
an inconsistent clause instance of P w�r�t� I or an incompletely covered atom
of P w�r�t� I� Many declarative diagnosers for logic programs have been de�
veloped� Shapiro ���� ��
 developed the algorithmic debugging method� and ex�
empli�ed the method through pure Prolog� Ferrand ��
 adapted the algorithmic
debugging method for de�nite logic programs� Lloyd ��	� ��
 presented a declar�
ative diagnoser for arbitrary logic programs� The diagnoser is a meta�program
which makes it easy to improve its performance by adding control information as
meta�calls� Lloyd ��	� ��
 obtained a top�down diagnoser by adding control in�
formation� Yan �		
 improved the top�down diagnoser by reorganising its control
information�

Each of these declarative diagnosers for logic programs has an inconsistency
diagnosis procedure and an insu�ciency diagnosis procedure� The inconsistency
diagnosis procedure is called with an inconsistency symptom of P w�r�t� I as
its input and the insu�ciency diagnosis procedure is called with an insu�ciency
symptom of P w�r�t� I as its input�

The main advantage of using a declarative diagnoser is that the oracle does
not need to know anything about the operational aspect of the program� All
that they need to know about is the intended interpretation of the program� The
quantity of queries may be large and reducing the quantity of queries has been
the main objective of much research into declarative diagnosis ��� �� �� ��� ��
�
The quantity of queries is dependent on the size of the search space and the
search strategy ���� ��
�

In this paper we present a declarative diagnoser for normal programs� A nor�
mal program consists of a set of normal clauses of the form A � L�� � � � � Lm

� We use the term diagnosis instead of debugging because debugging is a process which
involves bug detection and bug correction as well as bug diagnosis�



where A is an atom and each literal Li is either an atom or the negation of an
atom� The SLDNF resolution procedure is used to implement normal programs�
To ensure the soundness of the SLDNF resolution procedure� a safe computa�
tion rule or a weak safe computation rule must be used� A safe computation
rule always selects a positive literal or a ground negative literal� A weak safe
computation rule always selects a positive literal or a negative literal �Ai s�t�
Ai will not be instantiated if P succeeds on Ai� The diagnosis of unsafe uses
of negation as failure is beyond of the scope of this paper� We assume that no
unsafe use of negation as failure arises during the execution of an inconsistency
or insu�ciency symptom of P w�r�t� I�

Our diagnoser has a smaller search space than the diagnosers reported in the
literature� The intended interpretation I of a logic program P consists of the set
of atomic formulae that should be proved by P and the set of the atomic formulae
that should be disproved by P � Whilst program P is being debugged� the oracle
incrementally provides the debugging system with the intended interpretation I
of P � Therefore� at some stage of debugging� the debugging system has already
acquired part I� of I� Our declarative diagnoser uses I� to reduce the size of the
search space�

Given an inconsistency symptom A of P w�r�t� I� our diagnoser �rst con�
structs a tree called an I�congruent partial proof tree �cpp
 for P and A and
then diagnoses P by searching this tree� An I�cpp for P and A is similar to a
proof tree for P and A ��
 except that a leaf of an I�cpp for P and A is an atom
that is valid in I while a leaf of a proof tree for P and A is the atom true�
Because I � is a part of I� an I��cpp for P and A is also an I�cpp for P and A�
Therefore� an I��cpp for P and A can be used where an I�cpp for P and A is
required� Whilst an I��cpp tree for P and A is being constructed it is not neces�
sary to query the oracle because I� has already been known to the debugging
system� An I ��cpp for P and A is in size smaller than or equal to a proof tree
for P and A because an I��cpp for P and A may contain only one node for an
atom that is valid in I� while a proof tree for P and A has a subtree for the same
atom� When I� is empty� an I��cpp for P and A is a proof tree for P and A� As
I� increases during debugging� our diagnoser is able to construct a smaller and
smaller I ��cpp for P and A�

Given an insu�ciency symptomA of P w�r�t� I� our diagnoser �rst constructs
a tree called an I�complete partial SLDNF tree �cps
 for P � f� Ag and then
diagnoses by searching this tree� An I�cps for P �f� Ag is similar to an SLDNF
tree for P�f� Ag ���
 except that a node�W in an SLDNF tree for P�f� Ag
has a child node for each goal � W � that is derived from� W and P � while a
node �W in an I�cps for P �f� Ag only needs to have a child node for a goal
�W � that is derived from�W and P s�t�W � is satis�able in I� In other words�
if W � is unsatis�able in I then node �W � and the subtree rooted at �W � can
be removed from an I�cps for P �f� Ag� Because I� is a part of I� an I��cps for
P � f� Ag is also an I�cps for P � f� Ag� Hence� an I��cps for P � f� Ag
can be used where an I�cps for P � f� Ag is needed� The construction of an
I��cps for P � f� Ag does not need to query the oracle because I� has already



been known to the debugging system� An I��cps for P �f� Ag is smaller in size
than an SLDNF tree for P � f� Ag because a node � W in an SLDNF tree
for P � f� Ag usually has more child nodes than in an I��cps for P � f� Ag�
When I� is empty� an I��cps for P �f� Ag is an SLDNF tree for P �f� Ag� As
I � increases during debugging� our diagnoser is able to construct a smaller and
smaller I��cps for P � f� Ag�

Our diagnoser is generic in that di�erent tree search strategies can be used
with the diagnoser and the user can specialise the diagnoser by specifying the
search strategy to be used�

Section 	 formally introduces the concepts of I�cpp and I�cps and establishes
that they are su�cient for the purpose of diagnosis� that is� an inconsistency
symptom A of P w�r�t� I can be diagnosed by searching an I�cpp for P and A�
and an insu�ciency symptom A of P w�r�t� I can be diagnosed by searching an
I�cps for P � f� Ag� Section � presents the diagnoser and proves its sound�
ness and completeness� In section �� we show the generality of our declarative
diagnoser and compares the diagnoser with the declarative diagnosers in the
literature with respect to the size of the search space� Section � concludes the
paper and points to some further work on our declarative diagnoser�

� Search Space

This section formally introduces the notions of I�cpp and I�cps and shows that
an inconsistency symptom A of P w�r�t� I can be diagnosed by searching an
I�cpp for P and A and an insu�ciency symptomA of P w�r�t� I can be diagnosed
by searching an I�cps for P � f� Ag�

Let T be a tree� r the root of T � and v a node of T � v is a branch node if
v is neither the root of T nor a leaf of T � The height of T � written as h�T 
� is
the length of the longest path of T � n�T 
 denotes the number of nodes of T �
The level of v in T � denoted by l�v� T 
� is the length of the path from r to v� Tv
denotes the sub�tree of T that is rooted at v� Notice that T � Tr �

De�nition � An ordered tree T is a literal�labelled tree if each node of T is a
literal� Let L be a node of T and L�� L�� � � � � Lk the children of L in that order�
We say that L � L�� L�� � � � � Lk is the root implication of TL and write it as
RI�T� L
�

De�nition � Let P be a normal program� I an interpretation and A an atom�

��
 A partial proof tree T for P and A is a literal�labelled tree satisfying the fol�
lowing two conditions� �i
 The root of T is A� �ii
 For each non�leaf node L� of
T � either RI�T� L�
 is an instance of a clause of P or
RI�T� L�
 � ��A� � true
 where A� is an atom on which P �nitely fails�

�	
 T is a proof tree for P and A if T is a partial proof tree for P and A� and
every leaf node of T is true�

��
 A partial proof tree T for P and A is an I�cpp for P and A if every leaf node
of T is a literal that is valid in I�



A proof tree for P and A is an I�cpp for P and A because true is valid in I�
This de�nition of a proof tree is similar to that of ��
� The leaves of a proof tree
de�ned in ��
 are instances of unit clauses of P while they are true according to
the above de�nition that treats a unit clause as having body true�

Example � Let P be the following buggy quick sort program� P has a bug that
is indicated by a comment�

qs��X�L��L���� pt�L�X�L	�L
��qs�L	�L���qs�L
�L���ap��X�L���L��L��


�ap�L���X�L���L��

qs�������


pt��X�L��Y�L	��X�L
���� Y��X�pt�L�Y�L	�L
�


pt��X�L��Y��X�L	��L
��� Y�X� pt�L�Y�L	�L
�


pt����X�������


ap��X�L	��L
��X�L����� ap�L	�L
�L��


ap����L�L�


Let the intended interpretation I be as usual� qs��	� �� �
� �	����

 is an inconsist�
ency symptom of P w�r�t� I� Suppose that the acquired part I� of I consists of
the knowledge of built�in predicates� Then the following is an I��cpp for P and
qs��	� �� �
� �	� �� �

 and hence an I�cpp for P and qs��	� �� �
� �	� �� �

�

qs��
���	���
�	����������������������� �	�

���pt����	��
��	������ �
� ���qs��������� �	��

� ���
��� ��� � ���pt������������ �	��

� ���pt��	��
��	����� ��� � � ���true �
��

� ���
�	 ��� � ���qs������� �
	�

� ���pt����
������� ��� � � ���true �

�

� ���true ��� � ���qs������� �
��

���qs��	���	�� ��� � � ���true �
��

���pt����	������� ��� � ���ap������������ �
��

� ���true �	�� � ���ap���������� �
��

���qs������� �		� � ���true �
��

� ���true �	
� ���ap��
�	�������
�	���� �
��

���qs������� �	�� ���ap��	�������	���� �
��

� ���true �	�� ���ap������������ ����

���ap��	������	�� �	�� ���true ��	�

���ap���������� �	��

���true �	��

The above tree is smaller than a proof tree for P and qs��	� �� �
� �	� ���

 because
in a proof tree for P and qs��	� �� �
� �	����

 each of node ��
 �labelled with
	 �� �
 and node ��
 �labelled with 	 � �
 has a child labelled with true�

Example � Let P and I be the same as in example �� Suppose that at some
stage during debugging� the acquired part I� of I consists of the knowledge



of built�in predicates and the knowledge that qs��X
� �X

 is valid in I for all
possible X� Then removing nodes ���� and ���	� from the tree in example �
will result in an I��cpp for P and qs��	� �� �
� �	� ���

 and hence an I�cpp for P
and qs��	� �� �
� �	� �� �

� This tree and the tree in example � are both I�cpp for
P and qs��	� �� �
� �	����

� But the former is much smaller than the latter� This
example shows that� given the same inconsistency symptom A of P w�r�t� I� our
diagnoser is able to construct a smaller and smaller I�cpp for P and A as I�

increases during debugging�

Lemma � Let P be a normal program� I an interpretation� A an atom that is
invalid in I� and T an I�cpp for P and A� Then there is a node L� of T s�t�
RI�T� L�
 is invalid I� Furthermore� either RI�T� L�
 is an inconsistent clause
instance of P w�r�t� I� or RI�T� L�
 � ��A� � true
 and A� is an insu�ciency
symptom of P w�r�t� I�

Lemma � states that an inconsistency symptom A of P w�r�t� I can be
diagnosed by searching an I�cpp T for P and A to �nd a node L� of T s�t�
C � RI�T� L�
 is invalid in I� Either C is an inconsistent clause instance of P
w�r�t� I� or C � ��A� � true
 s�t� A� is an insu�ciency symptom of P w�r�t� I�

De�nition � An ordered tree T is a goal�labelled tree if each node of T is a
goal�

De�nition � Let P be a normal program� R a computation rule� G and G�

normal goals� and I an interpretation�

��
 We say that G� is derived from G and P via R and write G
P�R
�� G� if

G �� L�� � � � � Li� � � � � Lm� Li is the selected literal of G by R� and either �i

Li is positive� there is a clause A�W of P s�t� Li and A unify with a m�g�u�
�� and G� �� �L�� � � � � Li���W�Li��� � � � � Lm
�� or �ii
 Li is negative with
Li � �Ai� P �nitely fails on Ai� and G� �� �L�� � � � � Li��� Li��� � � � � Lm
�

�	
 C�G�P�R
 is the set of all the goals that are derived from G and P via R�

that is� C�G�P�R
 � fG�jG
P�R
�� G�g�

��
 E�G�P�R� I
 is the subset of C�G�P�R
 s�t� for each goal G� �� W � in
E�G�P�R� I
�W � is satis�able in I�

E�G�P�R� I
 � f�W � j ��W � � C�G�P�R

 and W � is satisfiable in Ig

De�nition � Let P be a normal program� R a computation rule� G a normal
goal� T a goal�labelled tree s�t� the root of T is G� and I an interpretation�

��
 T is a partial SLDNF tree for P �fGg via R if any two nodes G� and G� of
T s�t� G� is a child of G� satisfy G� � C�G�� P�R
�

�	
 T is an SLDNF tree for P � fGg via R if T is a partial SLDNF tree for
P � fGg via R s�t� if G� is a node of T � then each G� in C�G�� P�R
 is also
a node of T and G� is a child of G��



��
 T is an I�cps for P � fGg via R if T is a partial SLDNF tree for P � fGg
via R s�t� if G� is a node of T � then each G� in E�G�� P�R� I
 is also a node
of T and G� is a child of G��

The de�nition of an SLDNF tree is equivalent to that given in the literature
such as ���
� The notion of an I�cps T for P �fGg via R captures the idea that if
P is correct w�r�t� I� then any successful derivation of P �fGg via R corresponds
to a path from the root of T to a leaf of T which is �� It follows from de�nition �
that an SLDNF tree for P � fGg via R is an I�cps for P � fGg via R for any
I� If A is an insu�ciency symptom of P w�r�t� I� then an I�cps for P � f� Ag
via a fair computation rule R is a �nite tree� and none of its leaves is � because
any derivation of P � f� Ag terminated with � corresponds to a proof tree for
P and A� for some ��

Example � Let P be the following buggy program� The intended interpretation
for d�X�Ys�Zs
 is that either X is in list Ys but not in list Zs or X is in list Zs
but not in list Ys� The intended interpretation for m�X�L
 is that X is in list L�

d�X�Ys�Zs��� m�X�Ys���� m�X�Zs�
 m�X��X�Xs��


d�X�Ys�Zs��� m�X�Zs���� m�X�Zs�
 m�X��Y�Ys���� m�X�Ys�


� �� m�X�Ys�

d��� ��� 	� �
� �	��

 is an insu�ciency symptom of P w�r�t� I� Suppose that the ac�
quired part I� of I is empty� Then the following is an I�cps for
P � f� d��� ��� 	� �
� �	� �

g via the left�to�right computation rule� � is writ�
ten as ���� This tree is also an SLDNF tree for P � f� d��� ��� 	� �
� �	� �

g via
the left�to�right computation rule�

�d����	�
�����
��������������������� �	�

���m����	�
�������m����
���� �
� ���m����
�������m����
���� ���

���m����
�������m����
���� ��� ���m����������m����
���� ���

���m����������m����
���� ��� �����m����
���� ���

���m���������m����
���� ��� ���m���������m����
���� ���

Example � Let P and I be the same as in example �� Q � �Q is unsatis�able
in I� for any Q and any consistent I�� So� removing nodes ��� from the tree in
example � will result in an I��cps for P � f� d��� ��� 	� �
� �	��

g via the left�to�
right computation rule� This tree and the tree in example � are both I�cps for
P�f� d��� ��� 	� �
� �	��

g via the left�to�right computation rule� But the former
is much smaller than the latter� This example shows that� given the same insuf�
�ciency symptom A of P w�r�t� I� our diagnoser is able to constructs a smaller
and smaller I�cps for P � f� Ag via a �xed computation rule as I� increases
during debugging�

De�nition � Let I be an interpretation� T a goal�labelled tree and � W a
node of T � We say �W is a critical node of T w�r�t� I if either W is satis�able
in I and �W is a leaf of T � or W is satis�able in I and for each child�W � of
�W � W � is unsatis�able in I�



Lemma � Let P be a normal program� G� a normal goal� R a computation rule�
I an interpretation� T an I�cps for P �fG�g via R� then there is a critical node
G of T w�r�t� I� Furthermore� if G �� W �� L�� � � � � Li��� Li� Li��� � � � � Lm
with Li being the selected literal of G by R then either ��� Li is a positive literal
and Li is an incompletely covered atom of P w�r�t� I or ��� Li � �Ai where Ai
is an atom and Ai is an inconsistency symptom of P w�r�t� I�

Lemma 	 states that an insu�ciency symptom A of P w�r�t� I can be dia�
gnosed by searching an I�cps T for P � f� Ag via a fair computation rule R to
�nd a critical node G of T w�r�t� I� G �� � since P �nitely fails on A� Let L be
the selected literal L of G by R� Either L is an incompletely covered atom of P
w�r�t� I� or L � �A� and A� is an inconsistency symptom of P w�r�t� I�

� A generic diagnoser

This section presents our declarative diagnoser for normal programs and proves
its soundness and completeness� This declarative diagnoser will be referred to as
� and in presented in Edinburgh Prolog ��
�

Let T be a tree and v a node in T � We use T �Tv to denote the tree resulting
from deleting Tv� the sub�tree rooted at v� from T and TnTv to denote the tree
resulting from replacing Tv of T with a node v�

The inconsistency diagnosis procedure of � is inconsistency��A��D
� When
called with an inconsistency symptom A of P w�r�t� I� inconsistency�	 succeeds
with D being either an inconsistent clause instance of P w�r�t� I or an incom�
pletely covered atom of P w�r�t� I� inconsistency�	 �rst calls cpp�	 to construct
an I�cpp T for P and A� Then inconsistency�	 calls invalid impl�	 to �nd a
node L� of T s�t� C � RI�T� L�
 is invalid� If C is an instance of a clause of P �
inconsistency�	 returns with C as its output� Otherwise C � ��A� � true
 with
A� being an insu�ciency symptom of P w�r�t� I� In this case� inconsistency�	
calls insufficiency�	 to diagnose the insu�ciency symptom A� of P w�r�t� I�
The speci�cation for cpp��A��T 
 is that T is an I�cpp for P and A�

inconsistency�A�D� �� � invalid�impl�T�C� ��

cpp�A�T�� � height�T�	��

�� � root�impl�T�C�


invalid�impl�T�C�� � invalid�impl�T�C� ��

� � branch�node�T�L��

C����A	��true� � ��

�� insufficiency�A	�D� � �

� D � C � valid�L�

�
 � �� ����T�L�T	�

� � ����T�L�T	�

� ��

� invalid�impl�T	�C�




invalid impl��T��C
 succeeds with C � RI�T� L�
 being invalid in I for
some node L� of T if T is a literal�labelled tree whose root is invalid in I and
each of whose leaves is valid in I� height��T��H
 succeeds with h�T 
 � H�
branch node��T��L
 succeeds with L being a branch node of T �
root impl��T��C
 succeeds with C being the root implication of T � valid��L

succeeds i� L is valid in I� �����T��L��T�
 succeeds with T� � TL if L is a
node of T � �n���T��L��T�
 succeeds with T� � TnTL if L is a node of T �

The insu�ciency diagnosis procedure of � is insufficiency��A��D
� When
called with an insu�ciency symptom A P w�r�t� I� insufficiency�	 succeeds
with D being either an inconsistent clause instance of P w�r�t� I or an incom�
pletely covered atom of P w�r�t� I� insufficiency�	 �rst calls cps�	 to construct
an I�cps T for P � f� Ag� Then insufficiency�	 calls critical�	 to �nd a G
node of T s�t� G is a critical node of T w�r�t� I� Let L be the selected literal of G
by R� If L is positive� insufficiency�	 returns with L as its output� Otherwise�
L � �A� with A� being an inconsistency symptom of P w�r�t� I� In this case
insufficiency�	 calls inconsistency�	 to diagnose inconsistency symptom A�

of P w�r�t� I� cps��G��T 
 succeeds with T being an I�cps for P � fGg via a
�xed fair computation rule R� selected��G��L
 succeeds with L is the selected
literal of G by R�

insufficiency�A�D� �� � critical�T�G� ��

cps�����A��T�� � height�T����

�� � root�T�G�


critical�T�G�� � critical�T�G� ��

selected�G�L�� � �� height�T����

� � non�root�T�����W���

L���A	 � ��

�� inconsistency�A	�D� � �

� D � L � satisfiable�W�

�
 � �� ����T�����W��T	�

� � ����T�����W��T	�

� ��

� critical�T	�G�


critical��T��G
 succeeds with G being a critical node of T w�r�t� I if T
is a goal�labelled tree s�t� W is satis�able in I where � W is the root of T �
root��T��G
 succeeds with G being the root of T � non root��T��G
 succeeds
with G being a node of T other than the root of T � �����T��G��T�
 succeeds
with T� � T �TG if G is a node T � satisfiable��W 
 succeeds i�W is satis�able
in I�

At a certain stage of diagnosis� I� embodies the knowledge about the intended
interpretation I that have been acquired by the diagnoser� When the diagnoser
constructs an I�cpp � or an I�cps 
� it uses I� to decide if a literal L is known to
be valid in I �or if a conjunction W of literals is known to be unsatis�able in I
�
These judgements are made by a set of rules based on I� and other knowledge
that the diagnoser have acquired� One example rule is that A is valid in I if A
is an instance of another atom that is valid in I�



It is possible that the validity of a literal L in I or the unsatis�ability of a
conjunctionW of literals in I may not be detected by the set of rules at a certain
stage either becuase I� does not have enough information or because the set of
rules are not complete� This does not a�ect the soundness and the completeness
of � that are given later�

Example � We now show a session of using diagnoser �� The program is a
buggy quick sort program� When a query is imposed on the oracle by
satisfiable�� or valid��� variables in the atom concerned are replaced with gen�
erated mnemonic names that should be understood to be local to the query� The
top�down zooming strategy ���
 is used to search both I�cpp and I�cps � Before
the diagnosis session begins� the acquired part I� of the intended interpretation
I contains the following�

	 calls to ap�� or built�in procedures do not result in any bug symptom�
	 qs��X
� �X

 is valid in I�

The de�nitions for qs�	 and ap�� are the same as those in example � and pt��
is de�ned as follows�

pt��X�L��Y�L	��X�L
���� � pt��X�L��Y��X�L	��L
��� � pt����X�������


�Y�X� � Y��X� �Y��X� �

pt�L�Y�L	�L
�
 � pt�L�Y�L	�L
�
 �

� �� qs��
�	��L�


L � �
�	�

yes

� �� inconsistency�qs��
�	���
�	���D�


Is qs������� valid� y
 Is pt��	��
�����	�� valid� n


Is pt����
������� valid� y


D � �pt��	��
�����	�� �� pt����
��������

yes

� �� � the user corrects the bug in the 	st clause for pt��

� �� qs��
�	��L�


no

� �� insufficiency�qs��
�	��L��D�


Is pt��	��
�A�B� satisfiable� y
 A � � �	�
 B � � ��


D � pt��	��
��	
�����	
����

yes

� �� � the user corrects the bug in the 
nd clause for pt��

� �� qs��
�	��L�


L � �
�	�

yes

� �� inconsistency�qs��
�	���
�	���D�


D � �qs��
�	���
�	�� ��

pt��	��
��	������qs��	���	���qs��������ap��
�	������
�	���

yes



� �� � the user corrects the bug in the 	st clause for qs�



� �� qs��
�	��L�


L � �	�
�

yes

� ��

The following theorems establish the soundness and the completeness of ��

Theorem � 
Soundness of �� Let P be a normal program� A an atom and I
an interpretation�

��� If A is an inconsistency symptom of P w�r�t� I and inconsistency�A�D
 �
SS��
� then D is either an inconsistent clause instance of P w�r�t� I� or an
incompletely covered atom of P w�r�t� I�

��� If A is an insu�ciency symptom of P w�r�t� I and insufficiency �A�D
 �
SS��
� then D is either an inconsistent clause instance of P w�r�t� I� or an
incompletely covered atom of P w�r�t� I�

Theorem � 
Completeness of �� Let P be a normal program� A an atom
and I an interpretation�

��� If A is an inconsistency symptom of P w�r�t� I� then there is some D s�t�
D is either an inconsistent clause instance of P w�r�t� I� or an incompletely
covered atom D of P w�r�t� I and inconsistency�A�D
 � SS��
�

��� If A is an insu�ciency symptom of P w�r�t� I� then there is some D s�t� D
is either an inconsistent clause instance of P w�r�t� I� or an incompletely
covered atom D of P w�r�t� I and insufficiency �A�D
 � SS��
�

� Related work

This section compares our diagnoser with the diagnosers reported in the literat�
ure w�r�t� the search strategy and the search space� two major factors that a�ect
the quantity of queries�

��� Generality of �

Since procedure invalid impl�	 uses only the �rst branch node of a literal�
labelled tree enumerated by branch node�	� we can implement branch node�	
as the following without compromising the soundness and the completeness of
��

branch�node�T�N��� branch�node�	�T�N�


where the speci�cation for branch node ��	 is that branch node ��T�N 
 suc�
ceeds once and only once with N being a branch node of T � The di�erent im�
plementations of branch node ��	 will result in di�erent performances of the
inconsistency diagnosis procedure inconsistency�	 in terms of the quantity of
queries�



A top�down inconsistency diagnosis procedure based on tree search ��� ��� 	�

can be obtained by using an implementation of
branch node ��	 s�t� branch node ��T�N 
 succeeds with N being a child of
the root of T � A bottom�up inconsistency diagnosis procedure based on tree
search �	�
 can be obtained by using an implementation of branch node ��	 s�t�
branch node ��T�N 
 succeeds with N being the parent node of a leaf node of
T � The divide�and�query inconsistency diagnosis procedure ���� ��
 can be ob�
tained through an implementation of branch node ��	 s�t� branch node ��T�N 

succeeds with N being a node of T s�t� jn�TN 
 � n�T 
�	j 	 jn�TN �
 � n�T 
�	j
for any other node N � of T � The top�down zooming inconsistency diagnosis pro�
cedure ���
 can be obtained by using an implementation of branch node ��	 s�t�
branch node ��T�N 
 succeeds with N being a node of T satisfying either ��

N is a node of T other than the root of T � and �	
 N and the root of T have
the same predicate name� and ��
 N is not subordinate to any node of T that
satis�es ��
 and �	
� or N is a child of the root of T when no node of T satis�es
��
 and �	
�

Similarly� we can implement non root�	 as the following without a�ecting
the soundness and the completeness of ��

non�root�T�N��� non�root�	�T�N�


where the speci�cation for non root ��	 is that non root ��T�N 
 succeeds once
and only once s�t� N is a node of T other than the root node of T � The di�er�
ent implementations of non root ��	 will result in di�erent performances of the
insu�ciency diagnosis procedure insufficiency�	 in terms of the quantity of
queries�

A top�down insu�ciency diagnosis procedure can be obtained by using an
implementation of non root ��	 s�t� non root ��T�N 
 succeeds with N being
a child of the root of T � A bottom�up insu�ciency diagnosis procedure can
be obtained by using an implementation of non root ��	 s�t� non root ��T�N 

succeeds with N being a leaf node of T �

insufficiency�	 can be specialised resulting in a divide�and�query insuf�
�ciency diagnosis procedure through an implementation of non root ��	 s�t�
non root ��T�N 
 succeeds with N being a node of T s�t�
jn�TN 
� n�T 
�	j 	 jn�TN � 
� n�T 
�	j for any other node N � of T �

The formulation of � not only enables standard tree search strategies such as
top�down� bottom�up and divide�and�query to be used� but also allows more �ex�
ible strategies to be used as long as these strategies conform to the speci�cations
for branch node ��	 and non root ��T�N 
� This provides us with a platform for
evaluating various strategies as well as tailoring the declarative diagnoser to a
user who prefers a particular search strategy�

��� Search space

The search space of a declarative diagnoser is one of the major factors that a�ect
the quantity of queries� We brie�y compare the search space of our declarative
diagnoser � with the search spaces of the declarative diagnosers in the literature�



Suppose that A is the inconsistency symptom of P w�r�t� I to be diagnosed�
An inconsistency diagnosis procedure based on tree search ��� ��� ��� ��� 	�
�
including the divide�and�query diagnoser ���� ��
� is a specialised version of
inconsistency�	� These inconsistency diagnosis procedures search for an incon�
sistent clause instance of P w�r�t� I in the set of all the clause instances that are
used in one successful derivation of P �f� Ag� that is� the clause instances that
are used in one proof tree for P and A� The search space of inconsistency�	 is
the set of all the clause instances that are used in one I�cpp for P and A� Because
an I�cpp for P and A is smaller than a proof tree for P and A� inconsistency�	
has a smaller search space�

There are inconsistency diagnosis procedures that are not based on tree
search ��� �	� ��� ��� ��� 		
� Such inconsistency diagnosis procedures search
a larger space than inconsistency�	� We exemplify this through the single step�
ping inconsistency diagnosis procedure ���� ��
� The single stepping inconsistency
diagnosis procedure simulates Prolog�s execution of A� Whenever a call A� has
been executed successfully with a computed answer �� the oracle is asked if A�� is
valid in I� If A�� is valid in I� the single stepping inconsistency diagnosis proced�
ure continues to simulate Prolog�s execution of the remaining calls� Otherwise�
A�� is invalid in I� Let C � H� � L��� L

�

�� � � � � L
�

m be the clause instance used to
solve A�� �L��� L

�

�� � � � � L
�

m
� is already known to be valid in I� Therefore� C� is
an inconsistent clause instance of P w�r�t� I� Let R� be the left�to�right compu�
tation rule� The single stepping inconsistency diagnosis procedure searches for
an inconsistent clause instance of P w�r�t� I in the set of all the clause instances
used in the �rst successful SLDNF derivation of P � f� Ag via R� and all the
clause instances used in all the unsuccessful SLDNF derivations of P � f� Ag
via R� that are previous to the successful SLDNF derivation of P �f� Ag� The
other inconsistency diagnosis procedures that are not based on tree search can
be shown to have larger spaces than inconsistency�	 as well�

Suppose that A is the insu�ciency symptom of P w�r�t� I to be diagnosed�
insufficiency�	 searches for an incompletely covered atom of P w�r�t� I in the
set of all the selected atoms of all the nodes of an I�cps for P �f� Ag via a �xed
computation rule R� The search space of the insu�ciency diagnosis procedures
presented in ��� ��� ��� ��
 is the set of all the selected atoms of all the nodes of
a SLDNF tree for P � f� Ag� Because an I�cps for P � f� Ag is smaller than
a SLDNF tree for P � f� Ag� insufficiency�	 has a smaller search space than
these insu�ciency diagnosis procedures�

The insu�ciency diagnosis procedures presented in ��� �	� ��� 		
 have larger
search spaces than insufficiency�	 because� given an insu�ciency symptom A
of P w�r�t� I� their search spaces are larger than the set of all the selected atoms
of all the nodes of a SLDNF tree for P � f� Ag� See ���
 for a detailed analysis
of the search spaces of the insu�ciency diagnosis procedures in the literature�

��� Search space pruning versus oracle automation

The objective of reducing the quantity of queries has also been pursued by fully
or partly automating the oracle� Diagnosers in �	� �
 use a full speci�cation� A full



speci�cation makes it possible to completely avoid querying the user because any
query about the intended interpretation I can be answered by using the speci�c�
ation� Diagnosers in ��� �� ��
 use assertions about the intended interpretation
I to answer queries� Whenever a query is necessary� these diagnosers will try
to answer the query by using only the assertions� Those queries that cannot be
answered this way are imposed on the oracle� The assertions are descriptions of
the acquired part I� of the intended interpretation I�

Given an inconsistency symptom A of P w�r�t� I� our diagnoser constructs
an I�cpp for P and A using I�� The e�ect is equivalent to pruning a proof tree
for P and A before it is searched� Similarly� given an insu�ciency symptom A of
P w�r�t� I� our diagnoser constructs an I�cps for P �f� Ag using I�� The e�ect
is equivalent to pruning a SLDNF tree for P � f� Ag before it is searched�

Using I� to prune the search space before it is searched rather than to answer
queries makes sense� Firstly� a smaller search space means a smaller upper bound
for the quantity of queries� See ���
 for a detailed analysis for inconsistency dia�
gnosis procedures� Secondly� given an inconsistency symptom A of P w�r�t� I� if
a proof tree for P and A is searched� then a search strategy may select a node
L and query the oracle about the validity of L if the validity of L cannot be
decided by using I�� If L is subordinate to another node L� in the proof tree s�t�
L� is valid in I�� then an I�cpp for P and A that is constructed using I� will not
contain node L because L� is valid in I�� Therefore� this query can be spared� A
similar argument applies to insu�ciency diagnosis� This does not apply to the
top�down search strategy� However� the top�down strategy may not be either the
optimal strategy for the diagnosis problem at hand or the strategy preferred by
the user� We share with ��
 the opinion that the user should be allowed to choose
their own strategy�

� Conclusion

We have presented the generic declarative diagnoser � for normal logic programs
and established its soundness and its completeness� � is generic in the sense that
it can be used with various tree search strategies� � has a smaller search space
than the declarative diagnosers in the literature when diagnosing an inconsist�
ency or insu�ciency symptom of P w�r�t� I�

References

�� P� Deransart� Proofs of Declarative Properties of Logic Programs� In J�Diaz and
F�Orejas� editors� Proceedings of International Joint Conference on TAPSOFT����
pages ���	��
� Barcelona� Spain� March �����

�� N� Dershowitz and Y��J� Lee� Deductive Debugging� In Proceedings of ���� Sym�

posium of Logic Programming� pages ���	
�
� The IEEE Computer Society Press�
�����


� W� Drabent� S� Nadjm�Tehrani� and J� Maluszynski� The Use of Assertions in
Algorithmic Debugging� In ICOT� editor� The Proceedings of the International

Conference on Fifth Generation Computer Systems� ICOT� �����



�� W� Drabent� S� Nadjm�Tehrani� and J� Maluszynski� Algorithmic Debugging with
Assertions� In Harvey Abramson and M�H� Rogers� editors� Meta�Programming in

Logic Programming� pages ���	���� The MIT Press� �����
�� M� Ducass�e� Opium� � a Meta�Debugger for Prolog� In Y� Kodrato�� editor� Pro�

ceedings of the eighth ECAI� pages ���	���� M�unich� August ��� ����� Pitman�

� A� Edman and S���A� T�arnlund� Mechanization of an Oracle in a Debugging Sys�

tem� In Proceedings of the Eighth International Joint Conference on Arti�cial

Intelligence� volume �� pages ��
	���� Karlsruhe� West Germany� August ���
�
�� M� Falaschi� G� Levi� and C� Palamidessi� Declarative Modelling of the Opera�

tional Behavior of Logic Programs� Theoretical Computer Science� 
�����	
���
�����

�� G� Ferrand� Error Diagnosis in Logic Programming� an Adaptation of E�Y� Sha�
piro�s method� The Journal of Logic Programming� ��
�����	���� �����

�� A�M�J� Hutching� D�L� Bowen� L� Byrd� P�W�H� Chung� F�C�N� Pereira� L�M�
Pereira� R�Rae� and D�H�D� Warren� Edinburgh Prolog �the new implementation�
user�s manual� AI Applications Institute� University of Edinburgh� � October ���
�

��� T� Kanamori� T� Kawamura� M� Maeji� and K�Horiuchi� Logical Program Dia�
gnosis from Speci�cations� ICOT Technical Report TR����� March �����

��� Y� Lichtenstein and E� Shapiro� Abstract Algorithm Debugging� In R�A� Kowalski
and K�A� Bowen� editors� Proceedings of the �fth International Conference and

Symposium on Logic Programming� pages ���	�
�� The MIT Press� �����
��� J�W� Lloyd� Declarative Error Diagnosis� New Generation Computing� ������

	

���� �����
�
� J�W� Lloyd� Foundations of Logic Programming� Springer�Verlag� �����
��� M� Maeji and T� Kanamori� Top�Down Zooming Diagnosis of Logic Programs�

ICOT Technical Report TR����� August �����
��� L� Naish� Declarative Diagnosis of Missing Answers� Technical Report ���� �Re�

vised May ������ Department of computer science� The University of Melbourne�
May �����

�
� L�M� Pereira� Rational Debugging in Logic Programming� In E� Shapiro� editor�
Proceedings of the �rd International Logic Programming Conference� pages ��
	
���� Springer Verlag� ���
� Lecture Notes in Computer Science no� ����

��� L�M� Pereira and M� Calejo� A Framework for Prolog Debugging� In R�A� Kowalski
and K�A� Bowen� editors� Proceedings of the �fth International Conference and

Symposium on Logic Programming� pages ���	���� The MIT Press� �����
��� E� Shapiro� Algorithmic Program Diagnosis� In ACM Conference Record of the

ninth annual ACM Symposium on Principles of Programming Languages� pages
���	
��� Albuquerque� New Mexico� Jan� ����� �����

��� E� Shapiro� Algorithmic Debugging� The MIT Press� ���
�
��� L� Sterling and E� Shapiro� The Art of Prolog� The MIT Press� ���
�
��� M�H� van Emden and R�A� Kowalski� The Semantics of Predicate Logic as a

Programming Language� Arti�cial Intelligence� �
������

	���� ���
�
��� S�Y� Yan� Foundations of Declarative Debugging in Arbitrary Logic Programming�

International Journal of Man Machine Studies� 
�����	�
�� �����

This article was processed using the LaTEX macro package with LLNCS style


