CSE 230
PROGRAMMING PROJECT

1. A Shopping Cart

In this exercise you will complete a class that implements a shopping cart as an array of items. The
file Item.java contains the definition of a class named Item that models an item one would
purchase. An item has a name, price, and quantity (the quantity purchased). The file
ShoppingCart.java implements the shopping cart as an array of Item objects.

1. Complete the ShoppingCart class by doing the following:

a. Declare an instance variable cart to be an array of items and instantiate cart in the
constructor to be an array holding the capacity number of items.

b. Fill in the code for the increaseSize method. Your code should be similar to that in Listing
7.8 of the text but instead of doubling the size just increase it by 3 elements.

c. Fill in the code for the addToCart method. This method should add the item to the cart and
update the totalPrice instance variable (note this variable takes into account the quantity).

d. Compile your class.

2. Write a program that simulates shopping. The program should have a loop that continues as
long as the user wants to shop up to two times of size increase of capacity. Each time through
the loop read in the name, price, and quantity of the item the user wants to add to the cart. After
adding an item to the cart, the cart contents should be printed. After the loop print a "Please
pay ..." message with the total price of the items in the cart.

Deliverables

- A printout of the complete ShoppingCart.java and the simulation program and the final
execution.

// AEAAAAAAAAAAAAAAAAAXAAAAXAAAXAAAAXAAAXAAAXAAAAXAAAXAAAAAAAXAAAAAAAAAhdhi*k

// Item. Java
//
// Represents an item in a shopping cart.
// AEEEAAAAAAA A A AAAAAA A A A A AAAAAA A A A AAAAARARAAAAAAAAARAAAAAAAAA AR AAAXHK
import java.text.NumberFormat;
public class ltem
{
private String name;
private double price;
private int quantity;

/) -

// Create a new item with the given attributes.

// -

public Item (String itemName, double itemPrice, int numPurchased)

{
name = it
price = i
quantity

}

/) -
// Return a string with the information about the item
/) —
public String toString O

{

NumberFormat fmt = NumberFormat.getCurrencylnstance();

emName;
temPrice;
= numPurchased;

return (name + "\t" + fmt.format(price) + "\t" + quantity + "\t"
+ fmt.format(price*quantity));

}
/)
// Returns the unit price of the item
/) -
public double getPrice()
{

return price;
}
/) -
// Returns the name of the item
/)
public String getName()
{

return name;
he
// -
// Returns the quantity of the item
/) -
public int getQuantity()
{

return quantity;
}

V4 Sleiaiisiaioiaieiaioioiaiaisiaiaiaiaiaiaiaiaioiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiolaiaiaiaiaiaiaioiaiaiaiaieiaiaioioiaiaialaialaiofaiaiaiofalalel
// ShoppingCart.java

//

// Represents a shopping cart as an array of items

// AEAEAEAAAAAAAAAAAAAAAAAAAAAXAAAAAAAXAAAXAAAAXAAAXAAAAAAAXAAAAAAAAAAAAAAhAdhhik

import java.text.NumberFormat;

public class ShoppingCart

{
private int itemCount; // total number of items in the cart
private double totalPrice; // total price of items in the cart
private int capacity; // current cart capacity
// -
// Creates an empty shopping cart with a capacity of 5 items.
/) ——

public ShoppingCart()

{ capacity = 5;
itemCount = O;
totalPrice = 0.0;

}

/)

// Adds an item to the shopping cart.

/) -

public void addToCart(String itemName, double price, iInt quantity)

{
}

/) -
// Returns the contents of the cart together with
// summary information.

public String toString()
{

NumberFormat fmt = NumberFormat.getCurrencylnstance();

String contents = "\nShopping Cart\n";
contents += "\nltem\t\tUnit Price\tQuantity\tTotal\n";

for (int i = 0; 1 < itemCount; i++)
contents += cart[i]-toString() + "\n";

contents += '"\nTotal Price: " + fmt.format(totalPrice);
contents += "\n"';

return contents;

/) -
// Increases the capacity of the shopping cart by 3

/) -
private void increaseSize()

{

}

2. Exploring Inheritance

File Dog.java contains a declaration for a Dog class. Save this file to your directory and study it—
notice what instance variables and methods are provided. Files Labrador.java and Yorkshire.java
contain declarations for classes that extend Dog. Save and study these files as well.

File DogTest.java contains a simple driver program that creates a dog and makes it speak. Study
DogTest.java, save it to your directory, and compile and run it to see what it does. Now modify
these files as follows:

1. Add statements in DogTest.java after you create and print the dog to create and print a
Yorkshire and a Labrador. Note that the Labrador constructor takes two parameters: the name
and color of the labrador, both strings. Don't change any files besides DogTest.java. Now
recompile DogTest.java; you should get an error saying something like

./Labrador.java:7: cannot find symbol

symbol : constructor Dog()
location: class Dog

{

N
1 error

In the Labrador.java, Dog() isn't called anywhere.
a. What's going on? (Hint: What call must be made in the constructor of a subclass?)
=>

b. Fix the problem (which really is in Labrador) so that DogTest.java creates and makes the
Dog, Labrador, and Yorkshire all speak.

2. Add code to DogTest.java to print the average breed weight for both your Labrador and your
Yorkshire. Use the avgBreedWeight() method for both. What error do you get? Why?

=>

Fix the problem by adding the needed code to the Yorkshire class.

3. Add an abstract int avgBreedWeight() method to the Dog class. Remember that this means that
the word abstract appears in the method header after public, and that the method does not have
a body (just a semicolon after the parameter list). It makes sense for this to be abstract, since
Dog has no idea what breed it is. Now any subclass of Dog must have an avgBreedWeight
method; since both Yorkshire and Laborador do, you should be all set.

Save these changes and recompile DogTest.java. You should get an error in Dog.java (unless
you made more changes than described above). Figure out what's wrong and fix this error, then
recompile DogTest.java. You should get another error, this time in DogTest.java. Read the
error message carefully; it tells you exactly what the problem is. Fix this by changing DogTest
(which will mean taking some things out).

Deliverables

- A'UML class diagram for the classes Dog, Labrador, Yorkshire.
- A printout of the complete Dog.java, Labrador.java, Yorkshire.java, DogTest.java without any
errors and the final execution.

// FErAAAAXAAAAAIAAAAAAXAAAkAhAkAhkAhkhAhkhkAhAkhAhAhkAhkhAkhkAhkhkhkkhkhkhhhkhAkhkhAkhkhAkhkhkhkhhkkhhhhiihkixi
// Dog.java
//

// A class that holds a dog®"s name and can make it speak.
//

// AEAEAAAAAAAAAAAAAXAAAAXAAAXAAAXAXAAAXAAAXAXAAAXAAAAAAAAAAXAAAAXAAAAAAAAAAhhh*k

public class Dog

{

protected String name;

//| -
// Constructor -- store name

/) — e
public Dog(String name)

{

this.name = name;

}

/)
// Returns the dog®s name

/)
public String getName()

{

return namej;

}

// -
// Returns a string with the dog®"s comments

// -
public String speak()

{

}

return ""Woof";

//
//
//
//
//
//
//
//

AEAEAEAAAAAAAAAAAAAAAXAAAXAAAAXAAAXAAAAXAAAXAAAAAAAXAAAAAAAXAAAAAAAAAAdhh*k

Labrador. java

A class derived from Dog that holds information about
a labrador retriever. Overrides Dog speak method and includes
information about avg weight for this breed.

FTEAEXEAAXAAXITEAAXITAAXITAAXIXAAXAXAAXAXAAXAAAXAAAXAAIAXAAIAXAAITXAAITXAAITXAAITXAITXAddhAhddhiidkk

public class Labrador extends Dog

{

private String color; //black, yellow, or chocolate?
private static int breedWeight = 75;

public Labrador(String name, String color)

{

}

// -
// Big bark -- overrides speak method in Dog

/) ——
public String speak()

{

}

/)
// Returns weight

// ———
public static int avgBreedWeight()

{
}

this.color = color;

return "WOOF'";

return breedWeight;

// AEAEAEAAAAAAAAAAAAAAAXAAAXAAAAXAAAXAAAAXAAAXAAAAAAAXAAAAAAAXAAAAAAAAAAdhh*k

// Yorkshire.java

//

// A class derived from Dog that holds information about
// a Yorkshire terrier. Overrides Dog speak method.

//
V4 Saisisiaiaiasisisiaiaiaiaiaiaiasioioiaiaiaiaiaiaisiaiaiaiaiaiaioiosiaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaioaiaiaiaiaialale
public class Yorkshire extends Dog
{
public Yorkshire(String name)
{
super(name) ;
// -
// Small bark -- overrides speak method in Dog
// -
public String speak()
{
return "woof";
}
}

// FTEAEXEAAXTAAXTEAAXTAAXAAXIXAAXAXAAXAAAXAAAXAAAXAAAXAAIAXAAIAXAAITXAAITXAAXTXAITXAddhAhdhiidkk

// DogTest. java

//

// A simple test class that creates a Dog and makes it speak.
//

// FTEAEEAAXAAXITAAXTAAXITAAXITXAAXAXAAAXAAXAAAXAAAXAAAXAAIAXAAIXAAITXAAITXAAIT XXX XA dhAhdhiidkk

public class DogTest

{
public static void main(String[] args)

{
Dog dog = new Dog(''Spike'™);
System.out.printin(dog.getName() +

says " + dog.speak());

3. Painting Shapes

In this lab exercise you will develop a class hierarchy of shapes and write a program that computes the amount of paint
needed to paint different objects. The hierarchy will consist of a parent class Shape with three derived classes - Sphere,
Rectangle, and Cylinder. For the purposes of this exercise, the only attribute a shape will have is a name and the
method of interest will be one that computes the area of the shape (surface area in the case of three-dimensional
shapes). Do the following.

1. Write an abstract class Shape with the following properties:
An instance variable shapeName of type String
An abstract method area()
A toString method that returns the name of the shape

2. The file Sphere.java contains a class for a sphere which is a descendant of Shape. A sphere has a radius and
its area (surface area) is given by the formula 4*PI*radius”2. Define similar classes for a rectangle and a
cylinder. Both the Rectangle class and the Cylinder class are descendants of the Shape class. A rectangle is
defined by its length and width and its area is length times width. A cylinder is defined by a radius and height
and its area (surface area) is Pl*radius"2*height. Define the toString method in a way similar to that for the
Sphere class.

3. The file Paint.java contains a class for a type of paint (which has a "coverage" and a method to compute the
amount of paint needed to paint a shape). Correct the return statement in the amount method so the correct
amount will be returned. Use the fact that the amount of paint needed is the area of the shape divided by the
coverage for the paint. (NOTE: Leave the print statement - it is there for illustration purposes, so you can see
the method operating on different types of Shape objects.)

4. The file PaintThings.java contains a program that computes the amount of paint needed to paint various
shapes. A paint object has been instantiated. Add the following to complete the program:
Instantiate the three shape objects: deck to be a 20 by 35 foot rectangle, bigBall to be a sphere of radius
15, and tank to be a cylinder of radius 10 and height 30.
Make the appropriate method calls to assign the correct values to the three amount variables.
Run the program and test it. You should see polymorphism in action as the amount method computes the
amount of paint for various shapes.

Deliverables

- AUML class diagram for classes Shape, Sphere, Rectangle, Cylinder, Paint and PaintThings;.

- A printout of the complete classes Shape, Sphere, Rectangle, Cylinder, Paint and PaintThings
without any errors and the final execution.

//***

// Sphere.java
//

// Represents a sphere.
//***

public class Sphere extends Shape

private double radius; //radius in feet
J [~

// Constructor: Sets up the sphere.
S
public Sphere(double r)

{

super ("Sphere") ;

~g SN —~

R e
// Returns the surface area of the sphere.
[
public double areaf()
return 4*Math.PI*radius*radius;
[/
// Returns the sphere as a String.
/] ==
public String toString/()
return super.toString() + " of radius " + radius;
/**
/ Paint.java
/
epresents a e o ain a as a fixed area
/ Rep t typ f paint that h fixed
/ covered by a gallon. All measurements are in feet.
/**
ublic class Paint
private double coverage; //number of square feet per gallon
R
// Constructor: Sets up the paint object
[/ == T

public Paint (double c)

coverage = C;

}

/= e oo
// Returns the amount of paint (number of gallons)
// needed to paint the shape given as the parameter.
T
public double amount (Shape s)

{

System.out.println ("Computing amount for " + s);
return 0;

R R IR R R i R R R S Rk Rk i

//
// PaintThings.java
//
//

Computes the amount of paint needed to paint various
// things. Uses the amount method of the paint class which

// takes any Shape as a parameter.
//***

import java.text.DecimalFormat;

public class PaintThings

/ Creates some shapes and a Paint object
/ and prints the amount of paint needed
/ to paint each shape.

final double COVERAGE = 350;
Paint paint = new Paint (COVERAGE) ;

Rectangle deck;
Sphere bigBall;
Cylinder tank;

double deckAmt, ballAmt, tankAmt;
// Instantiate the three shapes to paint

// Compute the amount of paint needed for each shape

// Print the amount of paint for each.

DecimalFormat fmt = new DecimalFormat ("O.#");
System.out.println ("\nNumber of gallons of paint needed...");
System.out.println ("Deck " + fmt.format (deckAmt)) ;
System.out.println ("Big Ball " + fmt.format (ballAmt)) ;
System.out.println ("Tank " + fmt.format (tankAmt)) ;

PROJECT 1 DELIVERABLES

Submit hardcopy and softcopy of the following items to the lab assistant.

e A cover page with the project number, due date, and the names of your Project Team
Members.

e Deliverables from the exercise 1, 2 and 3.

e This page, with the appropriate signature and date, indicating that the project has been
completely and correctly demonstrated in lab.

LABORATORY SIGNATURE

PROJECT TEAM MEMBERS:

STUDENT NAME

STUDENT NAME

STUDENT NAME

LAB INSTRUCTOR SIGNATURE DATE

	Programming Project

