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Abstract

This tutorial white-paper illustrates practical aspects of FIR
filter design and fixed-point implementation along with the
algorithms available in the Filter Design Toolbox and the
Signal Processing Toolboxfor this purpose.

The emphasis is mostly on lowpass filters, but many of the
results apply to other filter types as well.

The tutorial focuses on practical aspects of filter design
and implementation, and on the advantages and disadvan-
tages of the different design algorithms. The theory behind
the design algorithms is avoided except when needed to mo-
tivate them.
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1 Ideal lowpass filter

The ideal lowpass filter is one that allows through all fre-
quency components of a signal below a designated cutoff
frequencyωc, and rejects all frequency components of a
signal aboveωc.

Its frequency response satisfies

HLP(ejω) =

{
1, 0≤ ω ≤ ωc

0, ωc < ω ≤ π
(1)

The impulse response of the ideal lowpass filter (1) can
easily be found to be [1]

hLP[n] =
sin(ωcn)

πn
, −∞ < n < ∞. (2)

2 FIR lowpass filters

Because the impulse response required to implement the
ideal lowpass filter is infinitely long, it is impossible to
design an ideal FIR lowpass filter.

Finite length approximations to the ideal impulse re-
sponse lead to the presence of ripples in both the passband
(ω < ωc) and the stopband (ω > ωc) of the filter, as well
as to a nonzero transition width between the passband and
stopband of the filter (see Figure1).

2.1 FIR filter design specifications

Both the passband/stopband ripples and the transition
width are undesirable but unavoidable deviations from the

Figure 1: Illustration of the typical deviations from the ideal
lowpass filter when approximating with an FIR filter,ωc = 0.4π.

response of an ideal lowpass filter when approximating
with a finite impulse response. Practical FIR designs typ-
ically consist of filters that meet certain design specifi-
cations, i.e., that have a transition width and maximum
passband/stopband ripples that do not exceed allowable
values.

In addition, one must select the filter order, or equiva-
lently, the length of the truncated impulse response.

A useful metaphor for the design specifications in FIR
design is to think of each specification as one of the angles
in a triangle as in Figure2.

The metaphor is used to understand the degrees of
freedom available when designating design specifications.
Because the sum of the angles is fixed, one can at most
select the values of two of the specifications. The third
specification will be determined by the design algorithm
utilized. Moreover, as with the angles in a triangle, if we
make one of the specifications larger/smaller, it will im-
pact one or both of the other specifications.

As an example, consider the design of an FIR filter that
meets the following specifications:

Specifications Set 1

1. Cutoff frequency: 0.4π rad/sample

2. Transition width: 0.06π rad/sample



Practical FIR Filter Design in MATLAB
Ricardo A. Losada Page 3

Figure 2: FIR design specifications represented as a triangle.

3. Maximum passband/stopband ripple: 0.05

The filter can easily be designed with the truncated-and-
windowed impulse response algorithm implemented in
fir1 (or using fdatool) if we use a Kaiser window.
The zero-phase response of the filter is shown in Figure
3. Note that since we have fixed the allowable transition
width and peak ripples, the order is determined for us.

Close examination at the passband-edge frequency,
ωp = 0.37π1 and at the stopband-edge frequencyωs =
0.43π shows that the peak passband/stopband ripples are
indeed within the allowable specifications. Usually the
specifications are exceeded because the order is rounded
to the next integer greater than the actual value required.

3 Optimal FIR designs with fixed
transition width and filter order

While the truncated-and-windowed impulse response de-
sign algorithm is very simple and reliable, it is not op-
timal in any sense. The designs it produces are gener-

1The passband-edge frequency is the boundary between the passband
and the transition band. If the transition width is TW, the passband-
edge frequencyωp is given in terms of the cutoff frequencyωc by ωp =
ωc−TW/2 Similarly, the stopband-edge frequency is given byωs =
ωc+TW/2.

Figure 3: Kaiser window design meeting predescribed specifi-
cations.

ally inferior to those produced by algorithms that employ
some optimization criteria in that it will have greater or-
der, greater transition width or greater passband/stopband
ripples. Any of these is typically undesirable in practice,
therefore more sophisticated algorithms come in handy.

Optimal designs are computed by minimizing some
measure of the deviation between the filter to be designed
and the ideal filter. The most common optimal FIR design
algorithms are based on fixing the transition width and the
order of the filter. The deviation from the ideal response
is measured only by the passband/stopband ripples. This
deviation or error can be expressed mathematically as [2]

E(ω) = Ha(ω)−HLP(ejω), ω ∈ Ω

whereHa(ω) is the zero-phase response of the designed
filter andΩ = [0,ωp]∪ [ωs,π]. It is still necessary to de-
fine a measure to determine “the size” ofE(ω) - the quan-
tity we want to minimize as a result of the optimization.
The most often used measures are theL∞-norm (‖E(ω)‖∞
- minimax designs) and theL2-norm (‖E(ω)‖2 - least-
squares designs).

In order to allow for different peak ripples in the pass-
band and stopband, a weighting function,W(ω) is usually
introduced,

EW(ω) = W(ω)[Ha(ω)−HLP(ejω)], ω ∈ Ω
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3.1 Linear-phase designs

A filter with linear-phase response is desirable in many
applications, notably image processing and data transmis-
sion. One of the desirable characteristics of FIR filters is
that they can be designed very easily to have linear phase.
It is well known [3] that linear-phase FIR filters will have
impulse responses that are either symmetric or antisym-
metric. For these types of filters, the zero-phase response
can be determined analytically [3], and the filter design
problem becomes a well behaved mathematical approx-
imation problem [4]: Determine the best approximation
to a given function - the ideal lowpass filter’s frequency
response - by means of a polynomial - the FIR filter - of
given order -the filter order -. By “best” it is meant the one
which minimizes the difference between them -EW(ω) -
according to a given measure.

The remez function implements an algorithm devel-
oped in [5] that computes a solution to the design problem
for linear-phase FIR filters in theL∞-norm case. The de-
sign problem is essentially to find a filter that minimizes
the maximumerror between the ideal and actual filters.
This type of design leads to so-called equiripple filters,
i.e. filters in which the peak deviations from the ideal re-
sponse are all equal.

Thefirls function implements an algorithm to com-
pute solution for linear-phase FIR filters in theL2-norm
case. The design problem is to find a filter that minimizes
the energy of the error between ideal and actual filters.

3.1.1 Equiripple filters

Linear-phase equiripple filters are desirable because they
have the smallest maximum deviation from the ideal fil-
ter when compared to all other linear-phase FIR filters of
the same order. Equiripple filters are ideally suited for ap-
plications in which a specific tolerance must be met. For
example, if it is necessary to design a filter with a given
minimum stopband attenuation or a given maximum pass-
band ripple.

For example the Kaiser-window design of Section2.1
was of 42nd order. With this same order, an equiripple
filter (with fixed transition width) can be designed that is
superior to the Kaiser-window design:

br = remez(42,[0 0.37 0.43 1],[1 1 0 0]);

Figure 4: Passband ripple for of both the Kaiser-window-
designed FIR filter and the remez-designed FIR filter.

Figure4 shows the superposition of the passband de-
tails for the filters designed with the Kaiser window and
with theremez function. Clearly the maximum deviation
is smaller for theremez design. In fact, since the filter is
designed to minimize the maximum ripple (minimax de-
sign), we are guaranteed that no other linear-phase FIR
filter of 42nd order will have a smaller peak ripple for the
same transition width.

3.1.2 Least-squares filters

Equiripple designs may not be desirable if we want to
minimize the energy of the error (between ideal and ac-
tual filter) in the passband/stopband. Consequently, if we
want to reduce the energy of a signal as much as possi-
ble in a certain frequency band, least-squares designs are
preferable.

For example, for the same transition width and filter
order as the equiripple filter designed in Section3.1.1, a
least-squares FIR design can be computed from

bls = firls(42,[0 0.37 0.43 1],[1 1 0 0]);

The stopband energy for this case is given by

Esb =
1
2π

∫ π

0.43
|Ha(ejω)|2dω
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Figure 5: Comparison of an optimal equiripple FIR design and
an optimal least-squares FIR design. The equiripple filter has a
smaller peak error, but larger overall error.

whereHa(ejω) is the frequency response of the filter.
In this case, the stopband energy for the equiripple filter

is approximately 1.7608e-004 while the stopband energy
for the least-squares filter is 3.3106e-005. (As a reference,
the stopband energy for the Kaiser-window design for this
order and transition width is 6.1646e-005).

So while the equiripple design has less peak error, it
has more “total” error, measured in terms of its energy.
The stopband details for both equiripple design and the
least-squares design is shown in Figure5.

3.2 Nonlinear-phase designs

One of the advantages of FIR filters, when compared to
IIR filters, is the ability to attain exact linear phase in a
straightforward manner. As we have already mentioned,
the linear-phase characteristic implies a symmetry or an-
tisymmetry property for the filter coefficients. Neverthe-
less, this symmetry of the coefficients constraints the pos-
sible designs that are attainable. This should be obvious
since for a filter withN + 1 coefficients, onlyN/2+ 1
of these coefficients are freely assignable (assumingN is
even). The remainingN/2 coefficients are immediately
determined by the linear-phase constraint.

One can think of this as reducing the search space for an

Figure 6: Depiction of the solution space for linear-phase and
nonlinear-phase FIR filters for a given set of specifications. Re-
gion A represents the set of all linear-phase FIR filters that meet
the specifications. Region B represents the set of all linear and
nonlinear-phase FIR filters that meet the specifications.

optimal solution. The idea is depicted in Figure6 [7]. Re-
gion A in the graph represents the set of all linear-phase
FIR filters that meet a given set of specifications. This
set contains both the optimal equiripple and the optimal
least-squares filters we have mentioned so far. Region B
represents the set of all FIR filters that meet a set of spec-
ifications, regardless of their phase characteristic. Clearly
Region B contains Region A.

3.2.1 Minimum-phase designs

If one is able to relax the linear-phase constraint (i.e. if the
application at hand does not require a linear-phase charac-
teristic), it is possible to design minimum-phase equirip-
ple filters that are superior to optimal equiripple linear-
phase designs based on a technique described in [8].

For example, the following minimum-phase design has
both smaller peak passband ripple and smaller peak stop-
band ripple than the linear-phase equiripple design of Sec-
tion 3.1.1:

bm = gremez(42,[0 0.37 0.43 1],...
[1 1 0 0],[1 10],’minphase’);

It is important to note that this is not a totally un-
constrained design. The minimum-phase requirement re-
stricts the resulting filter to have all its zeros on or inside
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the unit circle.2

3.2.2 More general nonlinear-phase designs

We have just stated that minimum-phase designs are not
completely unconstrained due to the requirement on the
loci of the zeros. A general nonlinear-phase design algo-
rithm is provided in thefirlpnorm function.

Consider the following specifications:

Specifications Set 2

1. Cutoff frequency: 0.375π rad/sample

2. Transition width: 0.15π rad/sample

3. Maximum passband ripple: 0.008

4. Maximum stopband ripple: 0.0009

A 30th order FIR equiripple filter (with nonlinear phase)
can be designed to meet that set of specs withfirlpnorm,

blp = firlpnorm(30,[0 .3 .45 1],[0 .3 ...
.45 1],[1 1 0 0],[1 1 10 10]);

This contrasts with a 37th order filter if we require lin-
ear phase. By comparison, a minimum-phase equiripple
filter designed usinggremez as described above also re-
quires a 30th order filter to meet the specifications which
is quite remarkable considering the minimum-phase con-
straint.

The fact that two different nonlinear-phase filters of the
same order meet the same specifications illustrates the dif-
ficulty associated with nonlinear-phase designs in general.
There is no longer a unique optimal solution to a given
design problem. Figure7 shows the virtually identical
magnitude responses. In contrast, Figure8 shows the re-
markably different impulse responses.
firlpnorm also provides the ability to select a different

norm for the optimization. While the default optimization
is for theL∞ norm, any norm between (and including)L2

andL∞ is possible.
By the arguments given above, it is possible to attain

a superior design usingfirlpnorm instead offirls for
the same filter order, provided linear phase is not a re-
quirement. For example,

2Given any linear-phase FIR filter with nonnegative zero-phase char-
acteristic, it is possible to extract the minimum-phase spectral factor us-
ing the firminphase function.

Figure 7: Magnitude responses of a minimum-phase equiripple
30th order filter and a general nonlinear-phase equiripple filter
of the same order. Both filters are designed to meet the same
specs.

Figure 8: Impulse response comparison for an equiripple
minimum-phase filter and a nonlinear-phase equiripple filter
with virtually the same magnitude response.

b = firlpnorm(40,[0 .4 .45 1],[0 .4 .45 1],...
[1 1 0 0],[1 1 10 10],[2 2]);

b2 = firls(40,[0 .4 .45 1],[1 1 0 0],[1 20]);
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Figure 9: Stopband details of a nonlinear-phase least-squares fil-
ter and a linear-phase least-squares filter of the same order. The
nonlinear-phase filter provides a smaller transition width and a
larger stopband attenuation.

yields a smaller transition width and a larger stopband
attenuation for the nonlinear-phase case (with approxi-
mately the same peak passband ripple). The stopband de-
tails are shown in Figure9.

Because it is possible to choose theLp norm with
which to optimize,firlpnorm is very flexible and allows
for the designer to reach a compromise between equirip-
ple and least-squares designs. This is illustrated in Figure
10.

3.2.3 A word on practical implementation

Because of the symmetry in the coefficients, some practi-
cal implementations will allow for a linear-phase response
using roughly half the number of multipliers. This is par-
ticularly true with FPGAs and specialized hardware. The
end result is that it may very well be possible to stick to
a linear-phase design and achieve a more efficient imple-
mentation than comparable nonlinear-phase designs.

Figure 10: OptimalLp norm designs for different values ofp.
All filters have the same order and transition width.

4 Optimal equiripple designs with
fixed transition width and peak
passband/stopband ripple

We have seen that the optimal equiripple designs out-
perform Kaiser-window designs for the same order and
transition width. The differences are even more dramatic
when the passband ripple and stopband ripple specifica-
tions are different. The reason is that the truncated-and-
windowed impulse response methods always give a result
with approximately the same passband and stopband peak
ripple. Therefore, always the more stringent peak rip-
ple constraint is satisfied, resulting in exceeding (possibly
significantly) all other ripple constraints at the expense of
unnecessarily large filter order.

To illustrate this, we turn to a different equiripple de-
sign in which both the peak ripples and the transition
width are fixed. Referring back to the triangle in Figure
2, this means the resulting filter order will come from the
design algorithm.

Consider once again the Specifications Set2. The
gremez function can be used to design this filter

b = gremez(’minorder’,[0 .3 .45 1],...
[1 1 0 0],[.008 .0009]);
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Figure 11: Passband ripple details for both the Kaiser-window-
designed FIR filter and the remez-designed FIR filter. The
Kaiser-window design over-satisfies the requirement at the ex-
pense of increase number of taps.

resulting in a filter of 37th order (38 taps). By compari-
son, a Kaiser-window design requires a 50th order filter
(51 taps) to meet the same specifications. The passband
details can be seen in Figure11. It is evident that the
Kaiser-window design over-satisfies the requirements sig-
nificantly.

4.1 Minimum-phase designs with fixed
transition width and peak pass-
band/stopband ripple

The same procedure to design minimum-phase filters with
fixed filter order and fixed transition width can be used to
design minimum-phase filters with fixed transition width
and peak passband/stopband ripple. In this case, rather
than obtaining smaller ripples, the benefit is meeting the
same transition width and peak passband/stopband ripples
with a reduced filter order.

As an example, consider the following specifications
set:

Specifications Set 3

1. Cutoff frequency: 0.13π rad/sample

2. Transition width: 0.02π rad/sample

3. Maximum passband ripple: 0.01

4. Maximum stopband ripple: 0.001

The minimum order needed to meet such specifications
with a linear-phase FIR filter is 262. This filter must be
the result of an optimal equiripple design. If we relax the
linear-phase constraint however, thegremez function can
design a minimum-phase FIR filter that meets the specifi-
cations set with 216th order:

bgm = gremez(’minorder’,[0 .12 .14 1],...
[1 1 0 0],[0.01 0.001],’minphase’);

5 Optimal equiripple designs with
fixed peak ripple and filter order

So far we have illustrated equiripple designs with fixed
transition width and fixed order and designs with fixed
transition width and fixed peak ripple values. The Filter
Design Toolbox also provides algorithms for designs with
fixed peak ripple values and fixed filter order [6]. This
gives maximum flexibility in utilizing the degrees of free-
dom available to design an FIR filter.

We have seen that, when compared to Kaiser-window
designs, fixing the transition width and filter order results
in an optimal equiripple design with smaller peak ripple
values, while fixing the transition width and peak ripple
values results in a filter with less number of taps. Nat-
urally, fixing the filter order and the peak ripple values
should result in a smaller transition width.

To verify this, we use thefirceqrip function,

bc = firceqrip(50,0.375,[0.008 0.0009]);

The comparison of this new design with the Kaiser-
window design is shown in Figure12. The transition
width has been reduced from 0.15π to approximately
0.11π.

5.1 Minimum-phase designs with fixed
peak ripple and filter order

Once again, if linear-phase is not a requirement, a
minimum-phase filter can be designed that is a superior
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Figure 12: Comparison of a Kaiser-window-designed FIR fil-
ter and an optimal equiripple FIR filter of the same order and
peak ripple values. The equiripple design results in a reduced
transition-width.

in some sense to a comparable linear-phase filter. In
this case, for the same filter order and peak ripple value,
a minimum-phase design results in a smaller transition
width than a linear-phase design.

For example, compared to the 50th order linear-phase
designbc, the following design has a noticeably smaller
transition width:

bcm=firceqrip(50,0.375,[0.008 0.0009],’min’);

6 Other equiripple designs

For specific design problems, further equiripple design
options are available in the Filter Design Toolbox. No-
tably, the constrained-band design - where one can fix
the filter order along with the peak ripple and the beggin-
ing/end of a given band (passband or stopband)- and the
sloped stopband design, where the stopband is no longer
equiripple, but rather has a predetermined slope.

6.1 Constrained-band equiripple designs

Sometimes when designing lowpass filters for decimation
it is necessary to guarantee that the stopband of the fil-

ter begins at a specific frequency value and that the filter
provide a given minimum stopband attenuation.

If the filter order is fixed - for instance when using spe-
cialized hardware - there are two alternatives available in
the Filter Design Toolbox for optimal equiripple designs.
One posibility is to fix the transition width, the other is to
fix the passband ripple.

For example, the design Specifications Set2 call for
a stopband that extends from 0.45π to π and provide a
minimum stopband attenuation of approximately 60 dB.
For illustration purposes, suppose the filter order available
is 40 (41 taps). Thefirceqrip function can design this
filter if we also fix the passband ripple to 0.008. The result
will be a filter with the smallest possible transition width
for any linear-phase FIR filter of that order that meets the
given specifications.

bc = firceqrip(40,0.45,[0.008 0.0009],...
’stopedge’);

If in contrast we want to fix the transition width, we can
use thegremez function. The result in this case will be
a filter with the smallest possible passband ripple for any
linear-phase FIR filter of that order that meets the given
specifications.

bg = gremez(40,[0 .3 .45 1],[1 1 0 0],...
[1 0.0009],{’w’,’c’});

The passband details of the two filters are shown in Fig-
ure13. Note that both filters meet the Specifications Set
2 because the order used (40) is larger than the minimum
order required (37) by an equiripple linear-phase filter to
meet such specifications. The filters differ in how they
“use” the extra number of taps to better approximate the
ideal lowpass filter.

6.2 Sloped equiripple filters

An alternative to using least-squares designs is to design
optimal equiripple filters but allowing for a slope in the
stopband of the filter. This has the advantage (over least-
squares designs) that the passband can remain equiripple,
thus minimizing the input signal fluctuations in that re-
gion.

While one can achieve sloped stopbands using the
remez or gremez methods by utilizing the weights,
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Figure 13: Comparison of two optimal equiripple FIR filters of
40th order. Both filters have the same stopband-edge frequency
and minimum stopband attenuation. One is optimized to mini-
mize the transition width while the other is optimized to mini-
mize the passband ripple.

firceqrip provides the best control and easiest way to
do this (at the expense of not having full control over the
transition width). Usingfirceqrip one can specify the
desired slope (in dB per frequency unit) for the stopband.

For example, the following design,

bf = firceqrip(42,0.4346,[0.035],[0.03],...
’slope’,40,’stopedge’);

results in a stopband energy of approximately 3.9771e-
005, not much larger that the least-squares design of Sec-
tion3.1.2, while having a smaller transition width (or peak
passband ripple - depending on the interpretation). The
passband details of both the least-squares design and the
sloped equiripple design are shown in Figure14 (in dB).
The stopband details are shown in Figure15 (also in dB).

7 Advanced design algorithms - in-
terpolated FIR filters

For any given FIR design algorithm, if the peak ripple
specifications remain the same, the filter order required to

Figure 14: Passband details of a sloped optimal equiripple FIR
design and an optimal least-squares FIR design. The equiripple
filter has a smaller peak error or smaller transition width depend-
ing on the interpretation.

Figure 15: Stopband details of a sloped optimal equiripple FIR
design and an optimal least-squares FIR design. The overall
error of the equiripple filter approaches that of the least-squares
design.

meet a given specifications set is inversely proportional to
the transition width allowed.
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Figure 16: The IFIR implementation. An upsampled filter is cas-
caded with an image suppressor filter to attain an overall design
with a reduced computational cost.

When the transition width is small, such as in the Speci-
fications Set3, the filter order required may be quite large.
This is one of the primary disadvantages of FIR filters.
We have already seen that relaxing the linear-phase re-
quirement results in a significant savings in the number of
filter coefficients.

The so-called interpolated FIR (IFIR) approach
[9],[10],[11] yields linear-phase FIR filters that can meet
the given specifications with a reduced number of multi-
pliers.

The idea is rather simple. Since the length of the filter
grows as the transition width shrinks, we don’t design a
filter for a given (small) transition width. Rather, we de-
sign a filter for a multipleL of the transition width. This
filter will have a significantly smaller length than a di-
rect design for the original (small) transition width. Then,
weupsamplethe impulse response by a factor equal to the
multiple of the transition width,L. Upsampling will cause
the designed filter to compress, meeting the original spec-
ifications without introducing extra multipliers (it only in-
troduces zeros, resulting in a larger delay). The price to
pay is the appearance of spectral replicas of the desired
filter response within the Nyquist interval. These replicas
must be removed by a second filter (called in this con-
text the interpolation filter or image suppressor filter) that
is cascaded with the original to obtain the desired overall
response. Although this extra filter introduces additional
multipliers, it is possible in many cases to still have over-
all computational savings relative to conventional designs.
The implementation is shown in Figure16.

The idea is depicted by example in Figure17 for the
case of an upsampling factor of 3. The “relaxed” design
is approximately of one third the length of the desired de-
sign, if the latter were to be designed directly. The upsam-
pled design has the same transition width as the desired
design. All that is left is to remove the spectral replica

Figure 17: Illustration of the IFIR design paradigm. Two filters
are used to attain stringent transition width specifications with
reduced total multiplier count when compared to a single filter
design.

introduced by upsampling. This is the job of the image
suppressor filter.

As an example of the computational cost savings, con-
sider once again the design Specifications Set3. The num-
ber of multipliers required for a single linear-phase design
was 263. An IFIR design can attain the same specs with
127 multipliers when using an upsampling factor of 6:

[bup,bimg]=ifir(6,’low’,[.12 .14],[.01 .001]);

The response of the upsampled filter and the image sup-
pressor filter is shown in Figure18. The overall response,
compared to a single linear-phase equiripple design is
shown in Figure19.

7.1 Further IFIR optimizations

A drawback in the IFIR design is that the passband ripples
of the two filters are combined in a disorderly fashion. In
the worst case scenario, they can add up, requiring the
design to ensure that the sum of the two peak passband
ripples does not exceed the original set of specifications.
Close inspection of the passband of the overall design in
the previous example, shown in Figure20, reveals a rather
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Figure 18: Magnitude response of the upsampled filter and the
image suppressor filter in an IFIR design.

Figure 19: Overall magnitude response of an IFIR design and
a conventional equiripple design. The IFIR implementation re-
quires 127 multipliers vs. 263 for the conventional implementa-
tion.

chaotic behavior (but certainly within spec.) of the ripple.

Further optimized designs, [2], [12], attain a much
cleaner passband behavior by jointly optimizing the de-

Figure 20: Passband details of an IFIR design revealing a rather
chaotic behavior of the ripple.

sign of the two filters to work better together. This results
in a filter that can meet the specifications set with an even
further reduction in the number of multipliers. The sav-
ings are especially significant for the image suppressor
filter, which is greatly simplified by this joint optimiza-
tion.

Utilizing this joint optimization, the Specifications Set
3 can be met with only 74 multipliers, once again for an
upsampling factor of 6. The filter can be designed using
the’adv’ flag in theifir function.

The manner in which the two filters work together is
best described by looking at their magnitude responses,
shown in Figure21. By pre-compensating for a severe
“droop” in the image suppressor filter, a flat passband can
be achieved with dramatic savings in the number of mul-
tipliers required for the image suppressor filter. Out of
the 74 multipliers required, 29 are for the image suppres-
sor filter and 45 for the upsampled filter. By contrast, in
the previous IFIR design, 78 of the 127 multipliers corre-
spond to the image suppressor filter, while 49 correspond
to the upsampled filter.

The passband details of the overall design show a nice
equiripple behavior, hinting at a much better optimized
design. The passband details are shown in Figure22.
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Figure 21: Magnitude response of the upsampled filter and the
image suppressor filter in an optimized IFIR design. The two
filters are jointly optimized in the design to achieve a specifica-
tions set with a reduced number of multipliers.

Figure 22: Passband details of an optimized IFIR design. The
optimized design exhibits nice equiripple behavior.

Figure 23: Cascading an IFIR implementation with a downsam-
pler.

Figure 24: Interchange of the downsampler and the upsampled
filter using the Noble identities.

7.2 Multirate implementation of IFIR de-
sign

When designing an IFIR filter, the upsampling factorL
used must be such that the (normalized) stopband-edge
frequencyωs satisfiesLωs < π. This implies that the
bandwidth of the output signal would be reduced by a fac-
tor of L.

It is convenient from a computational cost perspective
to reduce the sampling frequency of the filtered signal,
since at that point the Nyquist criterion is being unneces-
sarily oversatisfied. Subsequent processing of the filtered
signal without reducing its sampling rate would incur in
unnecessary (and expensive) redundant processing of in-
formation.

The idea is to downsample the filtered signal by a fac-
tor of L to match the reduction in bandwidth due to filter-
ing. If we denote byI(z) the image suppressor filter and
by U(zL) the upsampled filter, we would have a cascade
of these two filters and a downsampler as shown in Fig-
ure 23. Using the Noble identities, we can “commute”
the downsampler andU(zL) to obtain the implementa-
tion shown in Figure24. The combination ofI(z) and
the downsampler form a decimator which can be imple-
mented efficiently in polyphase form.

8 Interpolation filter design

In the context of multirate signal processing, interpolation
usually refers to band-limited interpolation. Band-limited
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Figure 25: Spectrum of band-limited continuous-time signal.

interpolation is based on the notion of an underlying band-
limited continuous-time signal that is being sampled.

Ideal band-limited interpolation will take a digital
(sampled) signal and produced an interpolated signal that
will be identical to the signal that would be obtained
by sampling the underlying continuous-time signal at a
higher rate.

Ideal band-limited interpolation can be accomplished
by means of upsampling and using an ideal lowpass filter.
Especially interesting is a time-domain interpretation of
the ideal interpolator, which leads naturally to polyphase
implementations.

8.1 Ideal band-limited interpolation in the
frequency domain

As we have already mentioned, the key concept of
bandlimited-interpolation is that a signal to be interpo-
lated is a sampled version of a band-limited continuous
time signal.

Denote the continuous-time signal byxc(t) and suppose
its spectrum is zero for all| f |> fmax. Its frequency spec-
trumX(2π j f ) is shown in Figure25.

If the signal is sampled atfs = 2 fmax, we obtain the
signal

xT [n] = {xc(nT)}, T =
1
fs

.

Figure 26: Spectrum of sampled signal withfs = 2 fmax.

Its spectrum,XT(e2π j f / fs) is shown in Figure26.
Now suppose the continuous-time signal was sampled

at a ratef ′s = L fs = 2L fmax. The sampled signal at the
higher rate,

xT ′ [m] = {xc(mT′)}, T ′ =
1
f ′s

=
T
L

,

wherem= Ln+k, k = 0, . . . ,L−1, will have a spectrum
XT ′(e2π j f / f ′s) as shown in Figure27 for the caseL = 2.

The job of the ideal interpolation filter should now be
clear from the frequency domain standpoint. Take the
discrete-time signal with spectrumXT(e2π j f / fs) anddig-
itally produce the discrete-time signalXT ′(e2π j f / f ′s) that
would have been obtained from sampling the original
continuous-time signal at ratef ′s = L fs.

The response of the ideal interpolation filter is shown
in Figure28. Clearly it is a lowpass filter with periodicity
f ′s, i.e. it must be operating at the high sampling rate. For
this reason, it is necessary to upsample the input signal3

by inserting an appropriate amount of zeros between sam-
ples in order to feed the interpolation filter a signal at the
correct rate.

More precisely, the response of the ideal filter

3Although this is not necessary in practice where efficient algorithms
are used.
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Figure 27: Spectrum of sampled signal withf ′s = 4 fmax.

Figure 28: Ideal interpolation filter overlaid with spectrum of
sampled signal withfs = 2 fmax.

HD(e2π j f / f ′s) for the general case of interpolation by a fac-
tor of L is given by

HD(e2π j f / f ′s) =

{
L, | f | ≤ fs

2

0, fs
2 < | f | ≤ f ′s

2

(3)

The impulse response of the ideal interpolation filter

Figure 29: Illustration of ideal band-limited interpolation in the
time domain.

can be found from the inverse DTFT [1],

hD[m] =
L
f ′s

sin(π fsT ′m)
πT ′m

(4)

If we use the fact thatf ′s = 1/T ′ andT ′ = 1
L fs

we have

hD[m] =
sin(πm/L)

πm/L
, −∞ < m< ∞ (5)

As expected for an ideal lowpass filter, it takes an infi-
nite impulse response to realize it. Further insight for the
ideal interpolation filter will be given in Section8.2where
we analyze things in the time-domain.

8.2 Ideal band-limited interpolation in the
time domain

Once again, the key idea of ideal band-limited interpola-
tion is todigitally produce a signal that would be exactly
the same as a signal we had obtained by sampling a band-
limited continuous time signal at the higher sampling rate.

The situation in the time domain is depicted in Figure
29.

Assuming the Nyquist sampling criterion has been sat-
isfied, i.e. the continuous-time signal is band-limited and
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has been sampled at a ratefs = 1
T ≥ 2 fmax, no informa-

tion has been lost from the continuous-time signalxc(t).
Therefore it should be possible to somehow recreateany
instantaneous valuexc(t0) of the continuous-time signal
from the sampled signalxT [n].

Looking at Figure29, we can see that the job of the
5-fold interpolator is to take every input samplexT [n]
and produce 5 output samples{xT ′ [m]}, m= 5n+ k, k =
0, . . . ,4 as follows (note thatT = 0.5 andT ′ = T/5= 0.1):

• xT ′ [5n] = xT [n]

• xT ′ [5n+1] = xT [n+ 1
5]

• xT ′ [5n+2] = xT [n+ 2
5]

• xT ′ [5n+3] = xT [n+ 3
5]

• xT ′ [5n+4] = xT [n+ 4
5]

In general, the ideal interpolator consists of a bank of
L filters which will fractionally advancethe input signal
by a factork/L,k = 0, . . . ,L−1. The outputs of the filters
are then interleaved (i.e. only one filter needs to operate
per high rate output sample) to produce the interpolated
signal.

TheL filters that comprise the filter bank are the frac-
tional advance filtersHk(z),

Hk(z) = zk/L, k = 0, . . . ,L−1.

Evaluating on the unit circle, we have

Hk(ejω) = ejωk/L, k = 0, . . . ,L−1

so that each filterHk(ejω) is allpass, i.e.|Hk(ejω)| = 1
and has linear phase, arg{Hk(ejω)}= ωk/L.

Herein lies the impossibility of designing these filters.
We cannot design them as FIR filters because no FIR fil-
ter can be allpass (except for a pure delay). We cannot
design them as IIR filters, because no stable IIR filter can
have linear phase. However, it is clear how we want to
approximate the ideal interpolation filter bank.

FIR approximations can produce the exact linear phase,
while approximating an allpass response as best possible.
On the other hand, IIR approximations will be exactly all-
pass, while trying to produce the required phase.

It is insightful to realize that the filters comprising the
filter bank are the polyphase components of the ideal in-
terpolation filter derived in (5)! Thus this view of the ideal
interpolator has the efficient polyphase structure “built-
in”.

Indeed, the impulse response of each fractional advance
filter in the filter bank is given by the inverse DTFT,

hk[n] =
1
2π

∫ π

−π
ejωk/Lejωndω

=
sin

(
π Ln+k

L

)
π Ln+k

L

which corresponds to theL decimated sequences of the
ideal impulse response by again writing uniquelym =
Ln+k, k = 0, . . . ,L−1 in (5).

8.3 Design of FIR interpolation filters

While interpolation filters are simply lowpass filters that
can be designed with the various techniques outlined pre-
viously, the polyphase filters that compose the ideal inter-
polation filter give some insight on things to be looking
for when designing interpolation filters.

Consider an interpolation by a factor ofL. The idealL
polyphase filters will have a group-delay given by

− k
L , k = 0, . . . ,L−1

For simplicity, consider an FIR approximation to the
ideal interpolation filter where the order is of the form
N = 2LM. Then each polyphase filter will have order
N/L = 2M.

Note that the ideal interpolation filter is infinitely non-
causal. After finite length truncation, it is possible to
make the approximation causal by delaying by half the
filter order,N/2. However, because we will implement
in efficient polyphase form, we can make each polyphase
component causal by delaying it byM samples.

The delay will mean the introduction of a phase com-
ponent in the response of each polyphase component.
So that instead of approximating the ideal fractional ad-
vanceejωk/L the polyphase components will approximate
ejω(k/L−M). The group-delay will consequently be of the
form

−dφ(ω)
dω

=−dω(k/L−M)
dω

= M−k/L.
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A problem that arises is that even though the FIR ap-
proximation to the ideal interpolation filter is symmetric
and thus has linear phase, the polyphase components are
not necessarily symmetric and thus will not necessarily
have exact linear phase. However, for each non symmet-
ric polyphase filter, there is a mirror image polyphase fil-
ter which will have the exact same magnitude response
with a mirror image group-delay that will compensate any
phase distortion.

8.3.1 Nyquist FIR filters

When we analyzed the behavior of the ideal interpolation
filter in the time-domain, we saw that for every input sam-
ple, L samples are produced including one that is exactly
the same as the input sample. This exact copy is “pro-
duced” by the polyphase filter that has allpass magnitude
and zero phase (i.e. the casek=0). In practice, this is the
only polyphase filter that can be designed exactly, albeit
with a group-delay ofM rather than zero.

Roughly speaking, a Nyquist filter is one for which
one of its polyphase components is a pure delay and thus
leaves the input signal unchanged (except for a possible
delay). When designing an interpolation filter, it is desir-
able for it to be a Nyquist filter since this will ensure that
even a nonideal filter will allow the input samples to pass
through unchanged. It can also be computationally advan-
tageous since one of the polyphase subfilters will have no
multipliers.

8.3.2 Halfband filters

Nyquist filters are also calledLth-band filters because the
passband of their magnitude response occupies roughly
1/L of the Nyquist interval. In the special case of an in-
terpolation by a factor of 2, the filters are known ashalf-
band filters. Halfband filters are commonly used when
interpolating (or decimating) by a factor of 2.

The cutoff frequency for a halfband filter is always
0.5π. Moreover, the passband and stopband ripples are
identical, limiting the degrees of freedom in the design.
The functionfirhalfband designs FIR halfband filters.
The specifications set still follows the triangle metaphor
shown in Figure2, taking into account the limitations just
described.

Figure 30: Magnitude response for polyphase subfilters of a
halfband FIR filter. Ideally, both subfilters would be perfectly
allpass.

The following three function calls design three equirip-
ple linear-phase halfband filters using a different pair of
specifications in each case from the three available -order
(N), transition-width (TW), and peak passband/stopband
ripple (R)- :

b1=firhalfband(102,.47); % N and TW
b2=firhalfband(102,.01,’dev’); % N and R
b3=firhalfband(’minorder’,.47,.01);% TW and R

To analyze how the design compares to the ideal inter-
polation filter, we can create an FIR interpolator object
and look at its polyphase subfilters, for example if we use
the third filter,b3,

h = mfilt.firinterp(2,2*b3);
polyphase(h)

The magnitude and group-delay responses for the
polyphase components of this filter are shown in Figures
30and31. Note thatM = N/2L is 16.5 in this case, so that
the group-delays are exactlyM−k/L, k = 0,1. The only
deviation from an ideal filter (ignoring an overall delay of
M samples) comes from the fact that one of the polyphase
subfilters is not perfectly allpass.
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Figure 31: Group-delay response for polyphase subfilters of a
halfband FIR filter. If the 16.5 samples delay -introduced for
causality reasons- is ignored, the group-delay behaves exactly
as the ideal interpolation filter, with an offset of 1/L between
the group-delay of each subfilter (L = 2 in this example).

8.3.3 Other Nyquist filters

Nyquist filters are characterized in the time-domain by
their impulse response being exactly equal to zero every
L samples (except the exact middle sample of the impulse
response). This is precisely why we get a polyphase sub-
filter that is a perfect allpass delay and allows the samples
to be interpolated to pass through the filter unchanged.

Designing a filter that is both a lowpass and simultane-
ously satisfies the just mentioned time-domain character-
istic is not a trivial task except for the case of window-
based designs, [13], [14].

Nevertheless, the advantage of conventional optimal
equiripple designs over a Nyquist window-based design is
not as clear in this case as it is with any conventional low-
pass filter. We illustrate by example: consider a Kaiser
window Nyquist filter design with a stopband attenuation
of 40 dB. Nyquist filters are often designed in terms of
their roll-off factor, ρ, due to their applications in com-
munications.4 The roll-off factor is related to transition-

4The well-known raised-cosine filter is a special case of a Nyquist
filter. In fact, the same reason that raised-cosine filters are common, i.e.
to achieve zero intersymbol-interference with a non ideal filter, is why

Figure 32: Magnitude response for polyphase subfilters of a
Nyquist FIR filter designed with the window method. The
polyphase subfilters better approximate allpass filters than a
comparable equiripple design for the bulk of the frequency band.

width simply by TW= ρπ/L. In this example,ρ = 0.1
andL = 4 thus the transition-width is 0.025π.

b1 = firnyquist(’minorder’,4,.1,.01); % L=4

The resulting filter is of 90th order. If we design an
equiripple filter of the same order and same attenuation,
we obtain a filter with a smaller transition width, but that
does not satisfy the time-domain requirement.

b2 = firceqrip(90,.25,[.01 .01]);

The magnitude responses of the polyphase subfilters for
the Nyquist window-based design are shown in Figure32.
For comparison, the magnitude responses for the optimal
equiripple design are shown in Figure33. Note the bet-
ter approximation to allpass filters in the Nyquist design
compared to the equiripple design (albeit for a slightly
smaller interval - this is the tradeoff).

Similarly, if we compare the group-delay response of
the polyphase subfilters, the Nyquist design once again
better approximates the ideal constant group-delay as

they are able to interpolate without affecting the input samples - namely
the fact that the impulse response becomes zero exactly at the right time.
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Figure 33: Magnitude response for polyphase subfilters of a op-
timal equiripple lowpass FIR filter. None of the subfilters be-
haves as a perfect allpass, an indication that this is not a Nyquist
filter.

compared to the equiripple design. The group-delay re-
sponses for the polyphase subfilters of the Nyquist design
are shown in Figure34. The group-delay responses for the
polyphase subfilters of the equiripple design are shown in
Figure35.

9 Design of perfect-reconstruction
two-channel FIR filter banks

A two-channel subband coding filter bank is shown in
Figure36. FiltersH0(z) andH1(z) are called the analy-
sis filters whileG0(z) andG1(z) are the synthesis filters.

The filter bank is called perfect reconstruction if the
end-to-end system acts as a delay, i.e. if the output signal
is simply a delayed version of the input.

It is well-known, [10], [15], that perfect reconstruction
can be achieved if

1
2G0(z)H0(−z)+ 1

2G1(z)H1(−z) = 0

and
1
2G0(z)H0(z)+ 1

2G1(z)H1(z) = z−k.

Figure 34: Group-delay response for polyphase subfilters of a
Nyquist FIR filter of order 90 andL = 4.

Figure 35: Group-delay response for polyphase subfilters of a
conventional equiripple lowpass design that could be used for
interpolation withL = 4.

Starting with a prototype lowpass filterH(z), the fol-
lowing selection for the filters results in perfect recon-
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Figure 36: Two-channel subband coding filter bank.

struction,

H0(z) = H(z) H1(z) = H(−z)
G0(z) = 2H(z) G1(z) =−2H(−z)

However, it turns out that in order to achieve perfect
reconstruction usingsolelyFIR filters, it is necessary that
additionally

H0(z)H1(−z)−H0(−z)H1(z) = cz−l (6)

wherec is some constant andl is an integer.
The function firpr2chfb designs FIR filters

H0(z),H1(z),G0(z),G1(z) such that the filter bank
achieves perfect reconstruction. The parameters to spec-
ify are simply the filter orderN and the passband-edge
frequencyωp. A prototype lowpass filter is designed
from which the four required filters are obtained. For
example,

[h0,h1,g0,g1] = firpr2chfb(19,.45);

The condition (6) is equivalent to the power comple-
mentary condition (becauseH0(z) = H(z and)H1(z) =
H(−z))

|H0(ejω)|2 + |H1(ejω)|2 = 1, ∀ω.

We can look at the magnitude-squared responses of
H0(z),H1(z) usingfvtool. The magnitude-squared re-
sponses are shown in Figure37. Notice how where one
filter’s ripple rises the other filter’s ripple declines to add
up to one.

Increasing the filter order (and possibly the passband-
edge frequency) improves the lowpass/highpass separa-
tion provided by the analysis filters but doesn’t have an
effect on the perfect reconstruction characteristic of the
overall system.

Figure 37: Magnitude-squared responses of the analysis filters
in an FIR perfect reconstruction filter bank. The two filters are
power-complementary.

10 Implementing an FIR filter using
fixed-point arithmetic

Several factors have to be taken into account when imple-
menting an FIR filter using fixed-point arithmetic. For
one thing, the coefficients have to be quantized from
double-precision floating point in which they are designed
into fixed-point representation with usually a smaller
number of bits. We must make sure we make the most
of the limited number of bits we have. Furthermore, per-
forming the arithmetic in fixed-point will introduce fur-
ther quantization errors when actually filtering with the
quantized coefficients. Once again, we must make sure
we minimize these quantization errors as much as the
hardware at hand allows us.

10.1 Some notation

First we will like to introduce the notation used in the
Filter Design Toolbox to represent fixed-point numbers.
Consider a register used to store a fixed-point number,

b0
�

b1
�

b2
� . . .

bB−1

�︸ ︷︷ ︸
B−bits
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The register hasB bits (it has a wordlength ofB), the value
of thekth bit is given bybk which can obviously be only
0 or 1. A two’s complement fixed-point number stored in
such a register has a value given by

value=−b02B−L−1 +
B−1

∑
k=1

bk2
B−L−k−1 (7)

whereL is a positive or negative integer to be described
now.

From (7), we can see that the value of a fixed-point
number is determined by assigning weights of the form
2−m to each bit. The leftmost bit,b0 has the largest
weight, 2B−L−1, this bit is called the most-significant bit
(MSB). The rightmost bit,bB−1, has the smallest weight,
2−L, which is why it is called the least-significant bit
(LSB).

Given the bit values,bk, the pair{B,L} completely
characterizes a fixed-point number, i.e. suffices in deter-
mining the value that the bits represent. We call such a
pair the format of a given quantity, and store it in a two-
element vector,[B,L].

10.2 Quantizing the coefficients

Consider the following filter

b=gremez(’minorder’,[0 .11 .14 1],...
[1 1 0 0],[.01 .0001]);

The filter has an attenuation of 80 dB and a its largest
coefficient is 0.1206.

The first thing to do is check if there are enough bits
available to represent the coefficients and provide the re-
quired dynamic range. A good rule of thumb [16] is to
assume 5dB/bit for the dynamic range5. In this example
we need at least 16 bits in order to provide the 80 dB of
attenuation.

It is not sufficient to simply say we are going to use
16 bits. For example, the following code creates a fixed-
point FIR filter using 16 bits to represent the coefficients
in fractional format:

Hq=qfilt(’fir’,{b},...
’CoefficientFormat’,[16,15]);

5Note that the usual 6db/bit rule doesn’t apply because quantization
error for the filter coefficients tends to be correlated, especially at the
extremes of the impulse response.

Figure 38: Magnitude response of the filter quantized with
[16,15] format.

The magnitude response of the quantized filter is shown
in Figure38. For comparison purposes, the nonquantized
magnitude response is also shown. Note that the stopband
attenuation for the quantized response is significantly less
than 80 dB at various frequency bands. The problem is
the poor utilization of the available range for the[16,15]
format as shown in Figure39.

To make the most of the 16 bits, there are two equiva-
lent approaches we can take. If we want to use[16,15]
format, we can scale the coefficients by multiplying them
by a factor of 8 to make the largest coefficients as close to
1 as possible without overflowing.

Alternatively, we can use[16,18] format so that the
quantization range becomes[0.125,0.125). The magni-
tude response using this format is shown in Figure40.
The improvement over the first case is evident.

Note that whether we scale the coefficients and use
[16,15] or we don’t scale and we use[16,18], the ac-
tual stored value (the binary bits) of each coefficient is
the same. However, in the former case, the filter now has
a gain of 18 dB due to the multiplication by eight. But
this can be compensated at the end, by moving the binary
point 3 bits to the left, without changing the bits.

To emphasize the point regarding the need to use both
the right number of bits and use them wisely, we present
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Figure 39: Impulse response of filter to be quantized shown rel-
ative to the available range for the coefficient format selected.

Figure 40: Magnitude response of the filter quantized with
[16,18] format.

the magnitude response of four different quantizations of
the same filter. In all cases, the format has been selected to
cover the range[0.125,0.125). The responses are shown
in Figure41. Notice that if you have fewer than 16 bits
available, you might as well redesign the filter, since you

Figure 41: Magnitude responses for various quantizations of a
filter with 80 dB stopband attenuation.

have many more multipliers than you can use6. On the
other hand, increasing the precision to 24 bits provides
only modest improvements in this case.

10.3 Fixed-point filtering

Quantizing the coefficients correctly is not the only thing
we need to worry about when implementing an FIR filter
with fixed-point arithmetic. Suppose we want to imple-
ment this filter using the Direct-form structure. The struc-
ture is shown as a reference in Figure42for 5 coefficients.
For the example at hand, we have 16 bit coefficients, and
suppose we need to filter 16-bit data that is well scaled in
the [−1,1) range. We can generate random data with that
characteristic as follows7:

q=quantizer([16,15],’RoundMode’,’round’);
xq=randquant(q,1000,1);

6If the specification is changed from 80 dB to 60 dB, 178 multipliers
are required as opposed to 220. If it is reduced to 40 dB, 134 multipliers
are required. Of course it is not a given that the application can allow
this change in specifications. The point is having less than 16 bits makes
it unfeasible to attain 80 dB.

7In order to reproduce the results, one can reset the seed of
the random number generator prior to generating the random vector:
rand(’seed’,0);
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Figure 42: Direct-form implementation of an FIR filter with 5
coefficients.

We will use[16,18] format for the coefficients for illus-
tration purposes. Since the input is already quantized, we
don’t need an input quantizer or a multiplicand quantizer,

Hq=qfilt(’fir’,{b},...
’CoefficientFormat’,[16,18]);

set(Hq,’InputFormat’,’none’)
set(Hq,’MultiplicandFormat’,’none’);

For reference, the other parameters are set by default as
follows:

OutputFormat = [16 15]
ProductFormat = [32 30]
SumFormat = [32 30]

however, we will temporarily set them to’none’ to have
a reference to compare to:

set(Hq,’OutputFormat’,’none’);
set(Hq,’ProductFormat’,’none’);
set(Hq,’SumFormat’,’none’);
yi=filter(Hq,xq);

The quantityyi represents the “ideal” output. This is the
best output we can hope to compute. Aside from using

the 16-bit quantized coefficients, all computations are per-
formed with double-precision arithmetic. Havingyi pro-
vides a nice reference signal to compare to.

Now we set the parameters back to their default val-
ues, except the product format is not accurate for this
case. The multiplication of a[16,18] coefficients with
a[16,15] input sample results in a[32,33] product. On
a DSP processor, we have two 16-bit registers being mul-
tiplied and the result stored in a 32-bit product register.
The correct setting for theProductFormat is [32,33]:

set(Hq,’OutputFormat’,quantizer([16,15]));
set(Hq,’ProductFormat’,quantizer([32,33]));
set(Hq,’SumFormat’,quantizer([32,30]));
yq=filter(Hq,xq);

An extremely useful tool to monitor what has happened
is qreport(Hq),

Max Min NOv NUn NOps
Coefficient 0.12 -0.026 0 0 220

Input 0.999 -0.999 0 0 1e3
Output 0.474 -0.536 0 2 1e3

Multiplicand 0.999 -0.999 0 0 22e3
Prod 0.12 -0.12 0 0 22e3
Sum 0.527 -0.537 0 0 22e3

which in this case reports that no overflows have occurred.
To measure how good the output is, we compute the en-
ergy of the error and the maximum error,

norm(yi-yq,2)
ans =

0.00054794884123692
norm(yi-yq,inf)
ans =

3.05137364193797e-005

Looking at Figure42, one can see there is clearly a
source of error when moving the data from the set of
adders (what would be the accumulator in a DSP proces-
sor) to the output. Indeed, the wordlength is being re-
duced from 32 to 16 bits. A model of what is happening
is shown in Figure43.

The theoretical power spectrum of the quantization
noise at the output of the filter corresponding to the model
in Figure43 is given by

Sy(ω) = |Hn(ejω)|2σ2
x
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Figure 43: Model showing the quantization noise by reducing
the number of bits from the adders to the output.

where Hn(ejω) is the transfer function from the noise-
source to the output -in this case simply one-, andσ2

x is
the power spectrum of the noise source -in this case it is
constant and equal to the variance of the noise8

σ2
x = 22(1−b)

12

whereb is the number of bits. So in this case, the theoret-
ical power spectrum is constant and for 16 bits it is,

Sy(ω) = 10log10
22(−15)

12 =−101.100811159671dB

An estimate of the noise power spectrum can be computed
with thenlm function,

[H,w,Pnn]=nlm(Hq,512,100);

A plot of Pnn (in dB) compared to the theoretical power
spectrum is shown in Figure44.

If the quantization noise shown in Figure43 is the only
noise in the system, we should be able to get an output
that exactly matchesyi by setting the output format to
be the same as the sum format (one can think of it as the
ability to “look inside the accumulator”),

8Strictly speaking, this formula is approximate because the signal at
the accumulator does not cover the entire range[−1,1) and because we
are not quantizing an analog signal, rather we are reducing the number
of bits in an already quantized signal.

Figure 44: Theoretical and estimated power spectrum of the
quantization noise.

set(Hq,’OutputFormat’,quantizer([32,30]));
yq=filter(Hq,xq);
norm(yi-yq,2)
ans =

2.02838467848398e-006
norm(yi-yq,inf)
ans =

7.98609107732773e-008

While the error has clearly been reduced, there is still
some left, indicating some roundoff still present in the
system. This is confirmed by looking at the power spec-
trum for the noise usingnlm. The plot of the power spec-
trum is shown in Figure45. The noise is obviously less
than before (about -168 dB), which is consistent with the
smaller errors we computed. To find the source of the
error it is simply a matter of looking at the discrepancy
between the product format and the sum format.

The sum format is set to[32,30] so that the three least
significant bits from the product register are basically be-
ing lost. We may be tempted to make the sum format the
same as the product format, but overflows occur left and
right,

set(Hq,’SumFormat’,quantizer([32,33]));
yq=filter(Hq,xq);
Warning: 1944 overflows in QFILT/FILTER.
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Figure 45: Noise power spectrum when making the output for-
mat equal to the sum format.

The problem is that for additions, in generalk bits are not
enough to always store the result of adding two quantities
with k bits each. Overflowmightoccur, and when adding
so many numbers (220 in this example) chances are very
high that it will occur. So it is preferable to live with some
roundoff error, rather than to overflow (the two-norm of
the error is a whooping 2.09011261755715, while the in-
finity norm is 0.285711827455089).

We can follow a trial-and-error procedure reducing the
sum format to[32,32], [32,31], etc. until no over-
flow occurs. However, a better way is to go back to the
[32 30] setting, filter, and look at the report given by
qreport. For this example,qreport shows that the max-
imum and minimum sum values are 0.527 and -0.5357
respectively. Therefore, a format of[32,31] will be the
optimal setting to minimize quantization noise while not
overflowing.

set(Hq,’SumFormat’,quantizer([32,31]));
set(Hq,’OutputFormat’,quantizer([32,31]));
yq=filter(Hq,xq);
norm(yi-yq,2)
ans =

7.53800283935414e-007
norm(yi-yq,inf)
ans =

Figure 46: Noise power spectrum when setting both the sum
format and the output format to [32,31].

2.93366611003876e-008

Once again, the better results are confirmed bynlm which
now shows a power spectrum for the noise of -174 dB.
The power spectrum plot is shown in Figure46.

10.3.1 Using an accumulator with extended precision

The results obtained previously are the best we were
able to obtain with a 32-bit accumulator such as that
available in some early DSP processors. Modern DSP
processors provide an accumulator with extended preci-
sion, so-calledguard bits, typically 40 bits when the data
wordlength is 16 bits.

If such an accumulator is available, we can get better
results once again if we use the extra bits wisely. For
instance, the following setting for the sum format will not
do,

set(Hq,’SumFormat’,quantizer([40,31]));
set(Hq,’OutputFormat’,quantizer([40,31]));

because no overflow occurred with the[32,31] setting
anyway. So throwing extra bits does no good (the errors
are exactly the same as for the[32,31} case). However,
if we set the LSB weighting the same as for the product
format, namely, if we use the following setting,
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set(Hq,’SumFormat’,quantizer([40,33]));
set(Hq,’OutputFormat’,quantizer([40,33]));

the errors between “ideal” and actual become exactly
zero. Of course, in this example it was not necessary to
have a full 40-bit accumulator to achieve an output ex-
actly equal to what we have called ideal. Once again,
from the report generated withqreport it was evident
that a setting of[34,33] for both sum and output would
have done.

In an actual DSP processor the output is not of the same
width as the accumulator, so realistically we need to set
the output format back to either 16 bits or 32 bits in this
example. Assuming we have 32 bits for the output, we
can once again determine the best possible output setting
by usingqreport. In this case,[32,31] is the best set-
ting because the minimum value reported at the output is
-0.5357. The two-norm and infinity-norm of the errors are

norm(yi-yq,2)
ans =

6.82098421980174e-009
norm(yi-yq,inf)
ans =

3.49245965480804e-010

which compare favorably with 7.53800283935414e-007
and 2.93366611003876e-008 respectively (which were
the best we could do for a 32-bit output with a 32-bit ac-
cumulator).

11 A design example

In this section we present an example of designing two
FIR filters for use on a digital down-converter (DDC) to
be used to downconvert a GSM signal. The hardware to
work with is a Graychip 4016 multi-standard quad DDC
chip [17].

Roughly speaking, a digital down-converter has two
main parts. The first section, which consists of a
numerically-controlled oscillator (NCO) and a mixer is
used to “bring” an IF signal down to baseband. The sec-
ond section is a (multistage) decimator used to isolate the
desired signal.

In this design example we concentrate on the second
part, i.e., we assume the signal has been moved to base-
band in a satisfactory manner.

Figure 47: Block diagram of the decimation part of the DDC.

For decimation purposes, the 4016 provides for a multi-
stage approach consisting of 3 FIR filters. Of the three fil-
ters, one is a cascaded integrator-comb (CIC) 5-stage dec-
imator and two are programmable decimate-by-two FIR
filters.

The multistage decimator block diagram is shown in
Figure47. The 5-stage CIC filter takes the high-rate in-
put signal and decimates it by a programmable factor.
The CIC filter is followed by a 21-tap compensation FIR
(CFIR) filter that equalizes the “droop” due to the CIC fil-
ter and provides further lowpass filtering and decimation
by 2. The CFIR is followed by a 63-tap programmable
FIR (PFIR) filter that is used for a final decimate-by-2.

One thing to note is that in a multistage decimator one
would always put the simplest filter first (that is, work-
ing at the highest rate), and would progressively increase
the complexity of the filters in subsequent stages. This
is exactly what happens here, the CIC filter is attractive
at high rates because it provides multiplierless operation.
The filter provides (coarse) lowpass filtering using adders
and delays. The filter is not without its drawbacks though,
its magnitude response is very far from ideal and exhibits
a “droop” in the passband which progressively attenuates
signals. The CFIR filter is also relatively simple, having
only 21 taps. Its primary mission is to compensate for the
droop from the CIC filter. The PFIR filter is the most com-
plex of the three, requiring 63 multiplications per sample,
which is why it operates at the lowest rate.

It is worth pointing out that this is a good example of
designs that require a fixed filter order. Also, both the
CFIR and PFIR are linear-phase filters by construction,
the designer can specify only half of its multipliers. Lin-
ear phase is usually a desirable characteristic in data trans-
mission. The available wordlength for the coefficients of
both the CFIR and PFIR filters is 16 bits.
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11.1 Using the 4016 for GSM

The 4016 is programmable so that it can be used with mul-
tiple standards. To this extent, the decimation factor of
the CIC filter can be selected as well as the coefficients
for both the CFIR and the PFIR filters.

For the particular case of GSM, we have the following
requirements [17]

• Input sample rate: 69.333248 MHz

• CIC decimation factor: 64

• CFIR input sample rate: 1.083332 MHz

• PFIR input sample rate: 541.666 kHz

• PFIR output sample rate: 270.833 kHz

• Passband width: 80 kKz

• Passband ripple: less than 0.1 dB peak to peak

The CIC filter has 5 stages and a decimation factor of
64. To view the magnitude response of this filter, we can
simply create a CIC decimation object and usefvtool,

Hcic=mfilt.cicdecim(64,1,5);
fvtool(Hcic)

The magnitude response is shown in Figure48. The filter
exhibits a|sin(x)/x|5 shape. It also has a large DC gain
(more than 180 dB), that has to be compensated for. To
compensate for this large gain, the 4016 provides a power-
of-two scaling prior to data entering the filter, in order to
avoid overflows.

11.1.1 Designing the CFIR filter

Since the overall passband that is desired is 80 kHz, it is
worthwhile to look at the CIC response in this band to get
an idea of what the CFIR filter must compensate for. The
passband details of the CIC filter are shown in Figure49.
The filter shows a droop with an attenuation of about 0.4
dB at 80 kHz. This is far more than the allowable peak to
peak ripple.

We want to design an optimal equiripple filter to make
the most of the 21 taps available. Since only 11 coeffi-
cients are actually freely specifiable, we are constrained
to a linear-phase design.

Figure 48: Magnitude response of 5-stage CIC decimator.

Figure 49: Passband details of scaled 5-stage CIC decimator.

We choose to use thefirceqrip function for the fol-
lowing important reasons:

• It allows for compensation of responses of the form
| sin(x)

x |N.

• The filter order is specifiable.

• It allows for a slope in the stopband, which we will
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use to attenuate spectral replicas of the PFIR filter
that follows.

• We can constrain the peak passband and stopband
ripples.

• Instead of the cutoff frequency, we can specify the
passband-edge frequency. In this particular case,
since the passband is the interval[0,80kHz], we want
to compensate for the CIC droop in the passband
only.

The filter order is determined for us by the hardware.
For the passband-edge frequency, we select 80 kHz, since
this the final passband of interest. We choose a very small
passband ripple, 0.01 dB, in order for the overall ripple
to be way within spec, keeping in mind there is still the
PFIR filter to follow which will add its own passband rip-
ple. The stopband attenuation is selected as 40 dB with a
60 dB slope to provide adequate attenuation of the PFIR
spectral replicas. Because this is a 5-stage CIC, the droop
is of the form| sin(x)

x |5, so we select 5 as the sinc power
to compensate for. Finally, the sinc frequency factor is
chosen as 0.5.

N = 20; % Filter order
Npow = 5; % Sinc power
w = 0.5; % Sinc frequency factor
Apass = 5.7565e-004; % 0.01 dB
Astop = 0.01; % 40 dB
Aslope = 60; % 60 dB slope
Fpass = 80/541.666; % Passband-edge
cfir = firceqrip(N,Fpass,[Apass, Astop],...

’passedge’,’slope’,...
Aslope,’invsinc’,[w,Npow]);

Hcfir = mfilt.firdecim(2,cfir);

The magnitude response of the CFIR filter is shown in
Figure50 quantized to 16 bits. Without zooming in, it is
hard to see the passband inverse-sinc response. We can
see however, as expected, the large transition width along
with the sloped stopband. Since the largest coefficient of
the CFIR filter is 0.37, we use a[16,16] format to make
the most of the 16 bits available.

To get an idea of the combined filter CIC*CFIR, we
overlay the magnitude response of each of these filters,
along with the combined magnitude response of the two.

Figure 50: Magnitude response of CFIR filter.

This is shown in Figure51. We can see the spectral repli-
cas of the CFIR filter centered around the frequency it is
operating at, 1.083332 MHz. It is hard to see the sinc-
compensation in this plot. For this we zoom in further.
The zoomed-in plot is shown in Figure52. The plot cov-
ers approximately the band[0,120kHz]. It is evident from
the plot that the combined response is virtually flat in the
passband (up to 80 kHz).

11.1.2 Designing the PFIR filter

An overlay of the GSM spectral mask requirements [17]
with the combined response of the CIC filter and the CFIR
filter is shown in Figure53. It is evident from the plot
that the combination of these two filters is not sufficient to
meet the GSM requirements for either adjacent band re-
jection or blocker requirements. The combined filter still
has a transition band that is too large, due to the large
transition band from the CFIR filter.

The PFIR filter is intended to be used to do the extra
work required to meet the GSM specifications. It is a
linear-phase FIR filter consisting of 63 taps. The design
gets a little tricky though. We know that the passband-
edge is 80 kHz, and the first adjacent band is at 100 kHz.
If we design a simple lowpass filter withremez orgremez
as follows:
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Figure 51: Magnitude response of CIC filter and CFIR filter
overlayed, along with the combined response of the two.

Figure 52: Passband details for the magnitude response of CIC
filter and CFIR filter overlayed, along with the combined re-
sponse of the two.

N = 62;
Fs=541666;
F=[0 80e3 100e3 541666/2]/(Fs/2);
A = [1 1 0 0];
W = [1 1];

Figure 53: Magnitude response of combined CIC and CFIR fil-
ters overlaid with the GSM spectral mask requirements. Clearly
the combination of these two filters does not meet the GSM re-
quirements.

pfir= gremez(N,F,A,W);
Hpfir = mfilt.firdecim(2,pfir);

The passband ripple requirement is not quite met. We can
alter the weights to get better passband ripple, but we must
be careful not to violate the adjacent band specifications.
A setting ofW = [10, 1]; would do the trick, but with
significantly less adjacent band attenuation. A compro-
mise can be achieved by setting up the design as a low-
pass with two separate stopband regions, each one with a
different weight to be used in the optimization:

N = 62;
Fs=541666;
F=[0 80e3 100e3 122e3 132e3 541666/2]/(Fs/2);
A = [1 1 0 0 0 0];
W = [10 1 10];
pfir= gremez(N,F,A,W);
Hpfir = mfilt.firdecim(2,pfir);

The quantized PFIR filter is shown in Figure54. The
maximum coefficient is 0.3378 so once again we use the
[16,16] format. The reference (nonquantized) filter is
also shown, but it is practically indistinguishable from the
quantized response. The different attenuation in the two
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Figure 54: Magnitude response of PFIR filter.

Figure 55: Magnitude response of CIC, CFIR, and PFIR filters.

stopbands due to the different weighting is evident. The
passband ripple is kept small in order to not exceed the
allowed peak to peak ripple.

A plot showing the magnitude responses of all three fil-
ters, CIC, CFIR, and PFIR, is shown in Figure55. Notice
that the sloped stopband of the CFIR filter provides max-
imum attenuation when the spectral replicas of the PFIR
filter occur.

Figure 56: Combined response of CIC, CFIR, and PFIR filters,
along with GSM spectral mask requirement.

The overall response of the combination
CIC*CFIR*PFIR is shown in Figure56. The GSM
spectral mask requirements are now easily met as is
clearly shown in the figure. The passband details are
shown in Figure57. The requirement that the peak to
peak ripple be less than 0.1 dB is easily met. Clearly
the design could be further tuned to provide a smaller
transition width at the expense of larger peak to peak
passband ripple and/or lesser adjacent band rejection.
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