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Abstract

This tutorial white-paper illustrates practical aspects of FIR

filter design and fixed-point implementation along with the

algorithms available in the Filter Design Toolbox and the
Signal Processing Toolboxor this purpose.

The emphasis is mostly on lowpass filters, but many of the 5

results apply to other filter types as well.

The tutorial focuses on practical aspects of filter design
and implementation, and on the advantages and disadvan-
tages of the different design algorithms. The theory behind
the design algorithms is avoided except when needed to mog

tivate them.
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1 Ideal lowpass filter
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The ideal lowpass filter is one that allows through all frésigure 1: lllustration of the typical deviations from the ideal
guency components of a signal below a designated culeffpass filter when approximating with an FIR filtex; = 0.4
frequencywy, and rejects all frequency components of a

signal aboveu.
Its frequency response satisfies

1, 0w
0, w<w<Tm

Hip(el®) = { @

The impulse response of the ideal lowpass fillgrcan
easily be found to bel]

_ sin(wen)

hp[n| o —00 < N< 00,

)

2 FIR lowpass filters

response of an ideal lowpass filter when approximating
with a finite impulse response. Practical FIR designs typ-
ically consist of filters that meet certain design specifi-
cations, i.e., that have a transition width and maximum
passband/stopband ripples that do not exceed allowable
values.

In addition, one must select the filter order, or equiva-
lently, the length of the truncated impulse response.

A useful metaphor for the design specifications in FIR
design is to think of each specification as one of the angles
in a triangle as in Figura.

The metaphor is used to understand the degrees of
freedom available when designating design specifications.

Because the impulse response required to implement Beause the sum of the angles is fixed, one can at most
ideal lowpass filter is infinitely long, it is impossible taselect the values of two of the specifications. The third

design an ideal FIR lowpass filter.

specification will be determined by the design algorithm

Finite length approximations to the ideal impulse retilized. Moreover, as with the angles in a triangle, if we
sponse lead to the presence of ripples in both the passbavadte one of the specifications larger/smaller, it will im-

(w < w¢) and the stopbandy(> wy) of the filter, as well

pact one or both of the other specifications.

as to a nonzero transition width between the passband ands an example, consider the design of an FIR filter that

stopband of the filter (see Figuig

2.1 FIR filter design specifications

Both the passband/stopband ripples and the transition

meets the following specifications:

Specifications Set 1

1. Cutoff frequency: Gmtrad/sample

width are undesirable but unavoidable deviations from the. Transition width: 006 rad/sample
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Figure 2: FIR design specifications represented as a triangl€igure 3: Kaiser window design meeting predescribed specifi-
cations.

3. Maximum passband/stopband ripple: 0.05 ally inferior to those produced by algorithms that employ

The filter can easily be designed with the truncated-argMe Optimization criteria in that it will have greater or-
windowed impulse response algorithm implemented ger. greater transition width or greater passband/stopband
firl (or using fdatool) if we use a Kaiser window. ripples. Any of these_ is typically ur_ldeswable in practice,
The zero-phase response of the filter is shown in Figdfgrefore more sophisticated algorithms come in handy.
3. Note that since we have fixed the allowable transition OPtimal designs are computed by minimizing some
width and peak ripples, the order is determined for us. Measure of the deviation between the filter to be designed

Close examination at the passband-edge frequerﬁbwthe ideal filter. The most common o_p_timaI_FIR design
wp = 0.37r and at the stopband-edge frequenay— algorithms are based on flx_lng the transmo_n width and the
0.43rt shows that the peak passband/stopband ripples %ﬁ%er of the filter. The deviation from the |deal_ response
indeed within the allowable specifications. Usually tH§ Measured only by the passhand/stopband ripples. This
specifications are exceeded because the order is rourfiféation or error can be expressed mathematicallylas [

to the next integer greater than the actual value required. E(w) = Ha(w) — HLP(ejw) we0

. . . . whereH,(w) is the zero-phase response of the designed
3 Optlmal FIR des'QnS with fixed filter andQ = [0, wp] U [ws, T0. It is still necessary to de-

transition width and filter order fine a measure to determine “the size’Hfw) - the quan-
tity we want to minimize as a result of the optimization.
While the truncated-and-windowed impulse response déie most often used measures arethenorm (|E(w)||«
sign algorithm is very simple and reliable, it is not op= Minimax designs) and thé&;-norm (|E(w)|2 - least-
timal in any sense. The designs it produces are gergguares designs).
In order to allow for different peak ripples in the pass-

1The passband-edge frequency is the boundary between the passB%md i ; i i
and stopband, a weighting functigw,w) is usuall
and the transition band. If the transition width is TW, the passband- P 9 9 ) y

edge frequencyop is given in terms of the cutoff frequenay; by wp = introduced,
wc— TW/2 Similarly, the stopband-edge frequency is givenday—= ;
we+TW/2, BEw (w) = W(0)[Ha(w) —Hip(e)], weQ
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3.1 Linear-phase designs Zero-phase Response
A filter with linear-phase response is desirable in ma b | = Eanioole dosign \

applications, notably image processing and data transn a oy J
sion. One of the desirable characteristics of FIR filters J [ i ,/
that they can be designed very easily to have linear phe | ,x" \\ /;’ ]
It is well known [3] that linear-phase FIR filters will have A T— — SO\ i
impulse responses that are either symmetric or antisy 1N
metric. For these types of filters, the zero-phase respo N LN Fai ‘,\ [
can be determined analyticall][ and the filter design o f Lo R S S
problem becomes a well behaved mathematical appr Lo ! j‘ // ‘J‘ \:

imation problem {]: Determine the best approximatior L YRl
to a given function - the ideal lowpass filter’s frequenc ! \

response - by means of a polynomial - the FIR filter - «

given order -the filter order -. By “best” it is meant the on Normalized Frequency (-7 radisample)

which minimizes the difference between therfy (w) -
according to a given measure. Figure 4: Passband ripple for of both the Kaiser-window-

The remez function implements an algorithm develdesigned FIR filter and the remez-designed FIR filter.

oped in [] that computes a solution to the design problem

for linear-phase FIR filters in thé..-norm case. The de-

sign problem is essentially to find a filter that minimizes Figure 4 shows the superposition of the passband de-

the maximumerror between the ideal and actual filter§y;stor the filters designed with the Kaiser window and

.Thls.type _Of deggn leads to SO_'C?”ed equmpplle f'Iterﬁlith theremez function. Clearly the maximum deviation

i.e. filters in which the peak deviations from the ideal '¥s smaller for thecemez design. In fact, since the filter is

sponse are all equal. - _ designed to minimize the maximum ripple (minimax de-
The firls function implements an algorithm to comg;jgn) we are guaranteed that no other linear-phase FIR

pute solution for linear-phase FIR filters in #8-N0rM ey of 42nd order will have a smaller peak ripple for the

case. The design problem is to find a filter that minimize$ e transition width.

the energy of the error between ideal and actual filters.

3.1.2 Least-squares filters

Zero-phase
Ve
N
AN
-

3.1.1 Equiripple filters . ) . )
Equiripple designs may not be desirable if we want to

Linear-phase equiripple filters are desirable because theiypimize the energy of the error (between ideal and ac-
have the smallest maximum deviation from the ideal fitual filter) in the passband/stopband. Consequently, if we
ter when compared to all other linear-phase FIR filters wfint to reduce the energy of a signal as much as possi-
the same order. Equiripple filters are ideally suited for able in a certain frequency band, least-squares designs are
plications in which a specific tolerance must be met. Fpreferable.
example, if it is necessary to design a filter with a given For example, for the same transition width and filter
minimum stopband attenuation or a given maximum passéder as the equiripple filter designed in Sect®bh.1, a
band ripple. least-squares FIR design can be computed from

For example the Kaiser-window design of Sectif
was of 42nd order. With this same order, an equiripdi’érs
filter (yvith fixed tre_msitiop width) can be designed that is The stopband energy for this case is given by
superior to the Kaiser-window design:

= firls(42,[0 0.37 0.43 1],[1 1 0 0]);

1 m o
br = remez (42, [0 0.37 0.43 1],[1 1 0 0]); EstET/O43|Ha(e'°’)| dw
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Zero-phase Response

Region B

Least-squares design
---- Equiripple design

.| Normalized Frequency: 0.4301758
Zero-phase: 0.08727939

Region A

Normalized Frequency: 0.574707
Zero-phase: 0.03514511

) AN 2y

Zero-phase

N/ \_/ \“\ NC
\ ) - » / . ‘ Figure 6: Depiction of the solution space for linear-phase and
I I i ' A nonlinear-phase FIR filters for a given set of specifications. Re-
" Normalized Frequency (< radisample) gion A represents the set of all linear-phase FIR filters that meet

the specifications. Region B represents the set of all linear and

) ] ) - ) nonlinear-phase FIR filters that meet the specifications.
Figure 5: Comparison of an optimal equiripple FIR design and

an optimal least-squares FIR design. The equiripple filter has a
smaller peak error, but larger overall error.
optimal solution. The idea is depicted in Fig@&g/]. Re-
gion A in the graph represents the set of all linear-phase
whereHa(el®) is the frequency response of the filter. FIR filters_, that meet a giyen set Qf_ specifications. This
In this case, the stopband energy for the equiripple filf¥ft contains bqth the optimal eqw_npple and the opt_lmal
is approximately 1.7608e-004 while the stopband ene st-squares filters we have_ mentioned so far. Region B
for the least-squares filter is 3.3106e-005. (As a referencs ’rejsents the set of all FIR filters that meet a set of spec-
the stopband energy for the Kaiser-window design for tH gcagons, regardless of.thelr phase characteristic. Clearly
order and transition width is 6.1646e-005). Region B contains Region A.
So while the equiripple design has less peak error, it
has more “total” error, measured in terms of its energy.> 1 Minimum-phase designs
The stopband details for both equiripple design and the

least-squares design is shown in Fighre If one is able to relax the linear-phase constraint (i.e. if the
application at hand does not require a linear-phase charac-
3.2 Nonlinear-phase designs teristic), it is possible to design minimum-phase equirip-

ple filters that are superior to optimal equiripple linear-

One of the advantages of FIR filters, when comparedgbase designs based on a technique describéd.in [
lIR filters, is the ability to attain exact linear phase in a For example, the following minimum-phase design has
straightforward manner. As we have already mentiondshth smaller peak passband ripple and smaller peak stop-
the linear-phase characteristic implies a symmetry or asand ripple than the linear-phase equiripple design of Sec-
tisymmetry property for the filter coefficients. Neverthaion 3.1.1:
less, this symmetry of the coefficients constraints the pos-
sible designs that are attainable. This should be obvigis = gremez (42, [0 0.37 0.43 1],...
since for a filter withN 4 1 coefficients, onlyN/2+ 1 [1100],[1 10],’minphase’);
of these coefficients are freely assignable (assumiiig
even). The remaining/2 coefficients are immediately It is important to note that this is not a totally un-
determined by the linear-phase constraint. constrained design. The minimum-phase requirement re-

One can think of this as reducing the search space forsdricts the resulting filter to have all its zeros on or inside
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the unit circle?

Magnitude Response
14

—— Minimum-phase equiripple

i . General nonlinear phase equiripple
3.2.2 More general nonlinear-phase designs

We have just stated that minimum-phase designs are b,
completely unconstrained due to the requirement on 1 !
loci of the zeros. A general nonlinear-phase design alc

© el \

rithm is provided in th&irlpnorm function. % \\
Consider the following specifications: = \

Specifications Set 2 at L
1. Cutoff frequency: B75rtrad/sample » \\
2. Transition width: 015mtrad/sample , \

3. Maximum passband ripple: 0.008

Normalized Frequency (xn rad/sample)

4. Maximum stopband ripple: 0.0009

Figure 7: Magnitude responses of a minimum-phase equiripple
A 30th order FIR equiripple filter (with nonlinear phaseiom order filter and a general nonlinear-phase equiripple filter

can be designed to meet that set of specs it pnorm, S;gg same order. Both filters are designed to meet the same
blp = firlpnorm(30,[0 .3 .45 1],([0 .3 ...

.45 17,[1 10 0],[1 110 10]);

This contrasts with a 37th order filter if we require lin

. . ! o Wi shess oae

ear phase. By Compal’lson, a mlnlmum-phase equn‘lp\ -e— General nonlinear phase equiripple

filter designed usingremez as described above also re s 1

quires a 30th order filter to meet the specifications whir [

is quite remarkable considering the minimum-phase cc | * 1

straint. eol £ ‘< |
The fact that two different nonlinear-phase filters of tr 2 . VU A

same order meet the same specifications illustratesthe & #* = ' ‘,,'\ e o T eg ety

ficulty associated with nonlinear-phase designs in gene N Y f e b b

There is no longer a unique optimal solution to a give o .; ‘\./."

design problem. Figur@ shows the virtually identical B . .

magnitude responses. In contrast, FigBishows the re- '

markably different impulse responses. aal ,
firlpnorm also provides the ability to select a differen Samples

norm for the optimization. While the default optimization
is for the L., norm, any norm between (and including  rijgyre 8: Impulse response comparison for an equiripple
and L, is possible.

. o ) minimum-phase filter and a nonlinear-phase equiripple filter
By the arguments given above, it is possible to attajith virtually the same magnitude response.

a superior design usinfjirlpnorm instead offirls for
the same filter order, provided linear phase is not a re-
guirement. For example,

2Given any linear-phase FIR filter with nonnegative zero-phase chb = firlpnorm(40, [0 .4 .45 1]

, 10 .4 .45 17, ...
ar-
acteristic, it is possible to extract the minimum-phase spectral factor us- (1100],[111010],[2 2]);
ing the firminphase function. b2 = firls(40,[0 .4 .45 11,[1 1 0 01,1 20]);
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\ ---- Linear phase least squares
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Figure 9: Stopband details of a nonlinear-phase least-squaresijure 10: OptimalZ, norm designs for different values gf

ter and a linear-phase least-squares filter of the same order. Ahdilters have the same order and transition width.
nonlinear-phase filter provides a smaller transition width and a
larger stopband attenuation.

4 Optimal equiripple designs with
fixed transition width and peak

yields a smaller transition width and a larger stopband passband/stopband ripple
attenuation for the nonlinear-phase case (with approxi-

mately the same peak passband ripple). The stopbandwe- have seen that the optimal equiripple designs out-
tails are shown in Figur. perform Kaiser-window designs for the same order and
Because it is possible to choose tiig norm with transition width. The (_jifferences are even more dram_gtic
which to optimize firlpnornmis very flexible and allows vyhen the p_assband ripple and _stopband ripple specifica-
for the designer to reach a compromise between equi@g-ns are d.lfferent. The reason is that the trunc;ated-and-
ple and least-squares designs. This is illustrated in Figu indowed |mpulse response methods always give a result
10, with approximately the same passband and stopband peak
ripple. Therefore, always the more stringent peak rip-
ple constraint is satisfied, resulting in exceeding (possibly
significantly) all other ripple constraints at the expense of
unnecessarily large filter order.
3.2.3  Aword on practical implementation To illustrate this, we turn to a different equiripple de-
sign in which both the peak ripples and the transition

width are fixed. Referring back to the triangle in Figure
Because of the symmetry in the coefficients, some pradjthis means the resulting filter order will come from the
cal implementations will allow for a linear-phase responsiesign algorithm.

using roughly half the number of multipliers. This is par- Consider once again the Specifications 3et The
ticularly true with FPGAs and specialized hardware. Thgenez function can be used to design this filter

end result is that it may very well be possible to stick to

a linear-phase design and achieve a more efficient imple= gremez ('minorder’, [0

.3 .45 17, ...
mentation than comparable nonlinear-phase designs. [1100],[.008

.0009]);
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Magnitude Response 2. Transition width: 002rtrad/sample
—— Kaiser-window design

Equiripple design | 3. Maximum passband ripple: 0.01
A 4. Maximum stopband ripple: 0.001

, ‘ \ j The minimum order needed to meet such specifications
% NN VS S A g WS g e with a linear-phase FIR filter is 262. This filter must be

/ ' / \ A the result of an optimal equiripple design. If we relax the
H linear-phase constraint however, theenez function can
design a minimum-phase FIR filter that meets the specifi-
I cations set with 216th order:

Magnitude
{
[

bgm = gremez ('minorder’, [0 .12 .14 1],...
[1100],[0.01 0.001], 'minphase’);

L
005

015 02 025
Normalized Frequency (xn rad/sample)

Figure 11: Passband ripple details for both the Kaiser-windo@- Optlmal eqUirippIe deSignS Wlth
designed FIR filter and the remez-designed FIR filter. The ﬁxed peak r|pp|e and ﬁ|ter order

Kaiser-window design over-satisfies the requirement at the ex-

pense of increase number of taps. So far we have illustrated equiripple designs with fixed

transition width and fixed order and designs with fixed
transition width and fixed peak ripple values. The Filter
resulting in a filter of 37th order (38 taps). By compariPesign Toolbox also provides algorithms for designs with
son, a Kaiser-window design requires a 50th order filtBxed peak ripple values and fixed filter ordei.[ This
(51 taps) to meet the same specifications. The passbéiygs maximum flexibility in utilizing the degrees of free-
details can be seen in Figufid. It is evident that the dom available to design an FIR filter.
Kaiser-window design over-satisfies the requirements sig\Ve have seen that, when compared to Kaiser-window
nificantly. designs, fixing the transition width and filter order results
in an optimal equiripple design with smaller peak ripple

. . . . values, while fixing the transition width and peak ripple
4.1 Minimum-phase designs with fixed values results in a filter with less number of taps. Nat-

transition Width and peak pass- qy, fixing the filter order and the peak ripple values
band/stopband ripple should result in a smaller transition width.

The same procedure to design minimum-phase filters withT0 verify this, we use thei rceqrip function,

fixed filter order and fixed transition width can be used & = firceqrip(50,0.375,[0.008 0.0009]);
design minimum-phase filters with fixed transition width . . . . .
and peak passband/stopband ripple. In this case, rathefN® comparison of this new design with the Kaiser-
than obtaining smaller ripples, the benefit is meeting tﬁ‘éndow design is shown in Figuré2. The tra}nsmon
same transition width and peak passband/stopband rippfédih has been reduced from1rm to approximately
with a reduced filter order. 0.11r

As an example, consider the following specifications
set: 5.1 Minimum-phase designs with fixed

L peak ripple and filter order
Specifications Set 3

Once again, if linear-phase is not a requirement, a
1. Cutoff frequency: QL3rtrad/sample minimum-phase filter can be designed that is a superior
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Zero-phase Response ter begins at a specific frequency value and that the filter

e B— i 1 provide a given minimum stopband attenuation.

~_ . —— Kaiser-window design . . . . .

Equiripple design If the filter order is fixed - for instance when using spe-

\ | cialized hardware - there are two alternatives available in

| the Filter Design Toolbox for optimal equiripple designs.

One posibility is to fix the transition width, the other is to

A\ | fix the passband ripple.

N For example, the design Specifications 3etall for

i \ ] a stopband that extends fromd48rt to 1t and provide a

RN ] minimum stopband attenuation of approximately 60 dB.

‘ For illustration purposes, suppose the filter order available

AN is 40 (41 taps). Theirceqrip function can design this
P~ filter if we also fix the passband ripple to 0.008. The result

will be a filter with the smallest possible transition width

for any linear-phase FIR filter of that order that meets the

(Igiven specifications.

Zero-phase

025 4
Normalized Frequency (xn rad/sample)

Figure 12: Comparison of a Kaiser-window-designed FIR fi
ter and an optimal equiripple FIR filter of the same order andt = firceqrip (40,0.45,[0.008 0.0009]
peak ripple values. The equiripple design results in a reduced
transition-width.

oo

"stopedge’);

If in contrast we want to fix the transition width, we can
use thegremez function. The result in this case will be
in some sense to a comparable linear-phase filter. afilter with the smallest possible passband ripple for any
this case, for the same filter order and peak ripple valli@ear-phase FIR filter of that order that meets the given
a minimum-phase design results in a smaller transiti§Recifications.
width than a linear-phase design. _ by - gremez (40,0 .3 .45 1],(1 1 0 0],...
For example, compared to the 50th order linear-phas (1 0.0009], ("', "c));
designbc, the following design has a noticeably smaller ’ ' ! '

transition width: The passband details of the two filters are shown in Fig-
ure 13. Note that both filters meet the Specifications Set
2 because the order used (40) is larger than the minimum
order required (37) by an equiripple linear-phase filter to

6 Other equiripp|e designs meet such specifications. The filters differ in how they
“use” the extra number of taps to better approximate the

For specific design problems, further equiripple desidgeal lowpass filter.

options are available in the Filter Design Toolbox. No-

tably_, the ConstrainedTband design_ - where one can_@_(z Sloped equiripple filters

the filter order along with the peak ripple and the beggin-

ing/end of a given band (passband or stopband)- and #healternative to using least-squares designs is to design
sloped stopband design, where the stopband is no longetimal equiripple filters but allowing for a slope in the
equiripple, but rather has a predetermined slope. stopband of the filter. This has the advantage (over least-
squares designs) that the passband can remain equiripple,
thus minimizing the input signal fluctuations in that re-
gion.

Sometimes when designing lowpass filters for decimationWhile one can achieve sloped stopbands using the
it is necessary to guarantee that the stopband of the fibmez or gremez methods by utilizing the weights,

bem=firceqrip(50,0.375,[0.008 0.0009], 'min’);

6.1 Constrained-band equiripple designs
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Magnitude Response

T T T T
—— Equiripple filter with fixed passband ripple
---- Equiripple filter with fixed transition width

Magnitude

01 115 02
Normalized Frequency (xn rad/sample)

Magnitude Response (dB)

—— Least-squares design
Sloped equiripple design

Magnitude (dB)

|
= Normalized Frequency: 0.3699951 L
Magnitude (dB): -0.7253991 ‘

005 01 5 2 025 02
Normalized Frequency (xn rad/sample)

Normalized Frequency: 0.3699951 | |
Magnitude (dB): -0.3768467 |

1

Figure 13: Comparison of two optimal equiripple FIR filters ofigure 14: Passband details of a sloped optimal equiripple FIR
40th order. Both filters have the same stopband-edge frequedegign and an optimal least-squares FIR design. The equiripple
and minimum stopband attenuation. One is optimized to mifiilter has a smaller peak error or smaller transition width depend-
mize the transition width while the other is optimized to miniing on the interpretation.

mize the passband ripple.

firceqrip provides the best control and easiest way

do this (at the expense of not having full control over tt

transition width). Usingtircegrip one can specify the

desired slope (in dB per frequency unit) for the stopbar
For example, the following design,

bf = firceqrip(42,0.4346,[0.035],[0.03],...

"slope’,40,’ stopedge’);

results in a stopband energy of approximately 3.9771
005, not much larger that the least-squares design of S
tion 3.1.2 while having a smaller transition width (or peal
passband ripple - depending on the interpretation). T
passband details of both the least-squares design anc
sloped equiripple design are shown in Figare(in dB).

The stopband details are shown in Figlitg(also in dB).

7 Advanced design algorithms - in-
terpolated FIR filters

Magnitude Response (dB)

° ‘“\ ! —— Least-squares design
| ---- Sloped equiripple design

‘/ \‘ ‘/"A\\“‘ L0\ “\ “” \\\
ol VA
/ H bt ”’\\U‘

i A
Ny
| ‘

A\‘

Magnitude (dB)

i
i i |
)
i ‘E i

5 i
045 05 075 02 085

055 06 065 07 8 S
Normalized Frequency (xn rad/sample)

Figure 15: Stopband details of a sloped optimal equiripple FIR
design and an optimal least-squares FIR design. The overall
error of the equiripple filter approaches that of the least-squares

design.

For any given FIR design algorithm, if the peak rippleneet a given specifications set is inversely proportional to
specifications remain the same, the filter order requirecth@ transition width allowed.
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Figure 16: The IFIR implementation. An upsampled filter is ca 8 ‘ " [~ Relaxed design | |
caded with an image suppressor filter to attain an overall des ! AN i
. . 05+
with a reduced computational cost. . ‘ N

When the transition width is small, such as in the Spe

i
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Image supressor filter ‘ Upsampled design
neee ol i

\

i i~
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fications Se8, the filter order required may be quite large . [—_Resulting design | -
This is one of the primary disadvantages of FIR filter osl L ‘ |
We have already seen that relaxing the linear-phase e e s
quirement results in a significant savings in the number
filter coefficients.

The so-called interpolated FIR (IFIR) approach Figure 17: lllustration of the IFIR design paradigm. Two filters
[9],[10],[11] yields linear-phase FIR filters that can meetre used to attain stringent transition width specifications with
the given specifications with a reduced number of mu|5pdl_Jced total multiplier count when compared to a single filter
pliers. esign.

The idea is rather simple. Since the length of the filter
grows as the transition width shrinks, we don’t design a
filter for a given (small) transition width. Rather, we deintroduced by upsampling. This is the job of the image
sign a filter for a multipleL of the transition width. This suppressor filter.
filter will have a significantly smaller length than a di- As an example of the computational cost savings, con-
rect design for the original (small) transition width. Thersider once again the design Specifications3S&he num-
we upsampléhe impulse response by a factor equal to thger of multipliers required for a single linear-phase design
multiple of the transition widthl,.. Upsampling will cause was 263. An IFIR design can attain the same specs with
the designed filter to compress, meeting the original sp@@7 multipliers when using an upsampling factor of 6:
ifications without introducing extra multipliers (it only in-
troduces zeros, resulting in a larger delay). The price tBup, bimg]=ifir (6, low’, [.12
pay is the appearance of spectral replicas of the desired
filter response within the Nyquist interval. These replicahe response of the upsampled filter and the image sup-
must be removed by a second filter (called in this copressor filter is shown in FigurE8. The overall response,
text the interpolation filter or image suppressor filter) thabmpared to a single linear-phase equiripple design is
is cascaded with the original to obtain the desired overaown in Figurel9.
response. Although this extra filter introduces additional
multipliers, it is possible in many cases to still have over7—
all computational savings relative to conventional designs.
The implementation is shown in Figuté. A drawback in the IFIR design is that the passband ripples
The idea is depicted by example in Figuré for the of the two filters are combined in a disorderly fashion. In
case of an upsampling factor of 3. The “relaxed” desighe worst case scenario, they can add up, requiring the
is approximately of one third the length of the desired ddesign to ensure that the sum of the two peak passband
sign, if the latter were to be designed directly. The upsanipples does not exceed the original set of specifications.
pled design has the same transition width as the desifddse inspection of the passband of the overall design in
design. All that is left is to remove the spectral replicdhe previous example, shown in Figl2@, reveals a rather

Normalized Frequency (xm rad/sample)

.1471,[.01 .0017);,

1 Further IFIR optimizations
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Figure 18: Magnitude response of the upsampled filter and frigure 20: Passband details of an IFIR design revealing a rather

image suppressor filter in an IFIR design.

Magnitude Response (dB)
— IFIR design L

Conventional equiripple design

Magnitude (dB)

02 s 05 6 07 06
Normalized Frequency (<7 rad/sample)

chaotic behavior of the ripple.

sign of the two filters to work better together. This results
in a filter that can meet the specifications set with an even
further reduction in the number of multipliers. The sav-
ings are especially significant for the image suppressor
filter, which is greatly simplified by this joint optimiza-
tion.

Utilizing this joint optimization, the Specifications Set
3 can be met with only 74 multipliers, once again for an
upsampling factor of 6. The filter can be designed using
the’adv’ flagin theifir function.

The manner in which the two filters work together is
best described by looking at their magnitude responses,
shown in Figure2l. By pre-compensating for a severe
“droop” in the image suppressor filter, a flat passband can

Figure 19: Overall magnitude response of an IFIR design apd achieved with dramatic savings in the number of mul-
a conventional equiripple design. The IFIR implementation "Bipliers required for the image suppressor filter. Out of
quires 127 multipliers vs. 263 for the conventional implementﬁie 74 multipliers required, 29 are for the image suppres-

tion.

sor filter and 45 for the upsampled filter. By contrast, in
the previous IFIR design, 78 of the 127 multipliers corre-
spond to the image suppressor filter, while 49 correspond

chaotic behavior (but certainly within spec.) of the rippld® the upsampled filter.

The passband details of the overall design show a nice

Further optimized designsZ]} [17], attain a much equiripple behavior, hinting at a much better optimized
cleaner passband behavior by jointly optimizing the ddesign. The passband details are shown in Figdre
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Figure 23: Cascading an IFIR implementation with a downsam-
pler.
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Figure 24: Interchange of the downsampler and the upsampled
filter using the Noble identities.

Figure 21: Magnitude response of the upsampled filter and '[Ze2 Multirate implementation of IFIR de-

image suppressor filter in an optimized IFIR design. The two sign

filters are jointly optimized in the design to achieve a specifica- Lo . .
tions set with a reduced number of multipliers. When designing an IFIR filter, the upsampling factor

used must be such that the (normalized) stopband-edge
frequencyws satisfiesLws < 1. This implies that the
bandwidth of the output signal would be reduced by a fac-
tor of L.

It is convenient from a computational cost perspective
to reduce the sampling frequency of the filtered signal,
/w\ - since at that point the Nyquist criterion is being unneces-

f\ ;‘\ 1 sarily oversatisfied. Subsequent processing of the filtered
NN
a

Magnitude Response
T T

| signal without reducing its sampling rate would incur in
| f unnecessary (and expensive) redundant processing of in-
| ‘ ‘ | formation.
\ | ] K \ / / 1 The idea is to downsample the filtered signal by a fac-
/ \ ‘ / / \ | 1 tor of L to match the reduction in bandwidth due to filter-
‘ / \ / | ing. If we denote byl (z) the image suppressor filter and
‘ | by U(Z-) the upsampled filter, we would have a cascade
Voo \J \ of these two filters and a downsampler as shown in Fig-
) ) ] ure 23. Using the Noble identities, we can “commute”
Nomaized Fromsoncy (. radisample o the downsampler and (z-) to obtain the implementa-
tion shown in Figure24. The combination of(z) and
the downsampler form a decimator which can be imple-
Figure 22: Passband details of an optimized IFIR design. Theented efficiently in polyphase form.
optimized design exhibits nice equiripple behavior.

Magnitude
| R

8 Interpolation filter design

In the context of multirate signal processing, interpolation
usually refers to band-limited interpolation. Band-limited
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Spectrum of xT[n], fS = meax
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Figure 25: Spectrum of band-limited continuous-time signal. ~ Figure 26: Spectrum of sampled signal with= 2 fyax.

interpolation is based on the notion of an underlying bangs spectrumxT(eZ"”/fS) is shown in Figure26.
limited continuous-time signal that is being sampled. Now suppose the continuous-time signal was sampled

Ideal band-limited interpolation will take a digitaly; 5 ratef, = Lfs = 2L fnax.  The sampled signal at the
(sampled) signal and produced an interpolated signal thg§her rate,
will be identical to the signal that would be obtained
by sampling the underlying continuous-time signal at a
higher rate.

Ideal band-limited interpolation can be accomplished
by means of upsampling and using an ideal lowpass filteherem= Ln+k, k=0,...,L — 1, will have a spectrum
Especially interesting is a time-domain interpretation &% (€?f/s) as shown in Figur@7 for the casé. = 2.
the ideal interpolator, which leads naturally to polyphaseThe job of the ideal interpolation filter should now be
implementations. clear from the frequency domain standpoint. Take the

discrete-time signal with spectruby (€?Uf/%) and dig-
8.1 Ideal band-limited interpolation in the itally produce the discrete-time signs} (/%) that
frequency domain woul_d have.been. obtained from sampling the original
continuous-time signal at rafg¢ = L fs.
As we have already mentioned, the key concept ofThe response of the ideal interpolation filter is shown
bandlimited-interpolation is that a signal to be interpin Figure28. Clearly it is a lowpass filter with periodicity
lated is a sampled version of a band-limited continuod$ i.e. it must be operating at the high sampling rate. For
time signal. this reason, it is necessary to upsample the input signal

Denote the continuous-time signalkyt) and suppose by inserting an appropriate amount of zeros between sam-
its spectrum is zero for alif | > fmax. Its frequency spec- ples in order to feed the interpolation filter a signal at the
trum X(2mjf ) is shown in Figures. correct rate.

f tTe signal is sampled ats = 2fmax, We obtain the  More precisely, the response of the ideal filter
signal

-

xulm = pe(mT)), T'= o =

b

1 3Although this is not necessary in practice where efficient algorithms

xr[n ={x(nT)}, T= T are used.
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Figure 27: Spectrum of sampled signal with= 4fmax.

Spectrum of ideal filter overlaid with that of xT[n], f_=2f
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Figure 28: Ideal interpolation filter overlaid with spectrum of

sampled signal witHs = 2fnax.

Figure 29: lllustration of ideal band-limited interpolation in the
time domain.

can be found from the inverse DTFT][

_ L sin(mtfsT'm)
- ff mT'm

hp[m] (4)

If we use the fact that{ = 1/T’ andT’ = L—lfs we have

_sin(rm/L)

hp[m] = T —00 <M< oo (5)

)

As expected for an ideal lowpass filter, it takes an infi-
nite impulse response to realize it. Further insight for the
ideal interpolation filter will be given in Sectidh2where
we analyze things in the time-domain.

8.2 Ideal band-limited interpolation in the
time domain

Once again, the key idea of ideal band-limited interpola-

Hp (€2™1/) for the general case of interpolation by a fagion is todigitally produce a signal that would be exactly

tor of L is given by

9

L lfl<s
fs fl
0, 2 <|f[<3

Hp (2M/1) :{

the same as a signal we had obtained by sampling a band-
limited continuous time signal at the higher sampling rate.
The situation in the time domain is depicted in Figure

(3) 20,

Assuming the Nyquist sampling criterion has been sat-

The impulse response of the ideal interpolation filtésfied, i.e. the continuous-time signal is band-limited and
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has been sampled at a rdte= % > 2fmax. NO informa- It is insightful to realize that the filters comprising the
tion has been lost from the continuous-time sigrdt). filter bank are the polyphase components of the ideal in-
Therefore it should be possible to somehow recreate terpolation filter derived ing)! Thus this view of the ideal
instantaneous value.(tg) of the continuous-time signalinterpolator has the efficient polyphase structure “built-
from the sampled signadr [n]. in”.

Looking at Figure29, we can see that the job of the Indeed, the impulse response of each fractional advance
5-fold interpolator is to take every input samptg[n] filter in the filter bank is given by the inverse DTFT,
and produce 5 output samplésr/[m|}, m=5n+k, k=

m . .
0,...,4 as follows (note thaf =0.5andT’ =T /5=0.1): hk[n] = %_[/ e¥/Lelondg
—T
e Xq/[Bn] = x7[n] sin(m-)
= T[Ln+k
L

o Xp[5n+1] =x7[n+ %]
which corresponds to the decimated sequences of the

o Xp/[5n+2] = X7 [n+%] ideal impulse response by again writing uniquety=
Ln+k k=0,...,L—21in (5).

o xp/[5n+3] =xr[n+ 3]

o xp[5n+4) =xr[n+ 4] 8.3 Design of FIR interpolation filters

hile interpolation filters are simply lowpass filters that
8n be designed with the various techniques outlined pre-
viously, the polyphase filters that compose the ideal inter-

by afacto_rk/L,k: 0,...,L—1. The outputs of the filters ,  ation filter give some insight on things to be looking
are then interleaved (i.e. only one filter needs to oper € when designing interpolation filters

per high rate output sample) to produce the int(:“rpOI""tGdConsider an interpolation by a factor lof The idealL

In general, the ideal interpolator consists of a bank
L filters which will fractionally advancehe input signal

signal. . . .
olyphase filters will have a group-delay given b
The L filters that comprise the filter bank are the fraé2 vp grouip v 4
tional advance filtersiy(z), —-K k=0,...,L-1
Hi(2) = AL k=0 L—1 For simplicity, consider an FIR approximation to the
’ Y ideal interpolation filter where the order is of the form
N/L =2M.
Hk(ej‘*’) — eJ'wk/L, k=0,....,L—1 Note that the ideal interpolation filter is infinitely non-

causal. After finite length truncation, it is possible to
so that each filteHy(el?) is allpass, i.e.|Hc(e/®)] =1 make the approximation causal by delaying by half the
and has linear phase, ddy(e/?)} = wk/L. filter order,N/2. However, because we will implement
Herein lies the impossibility of designing these filtersn efficient polyphase form, we can make each polyphase
We cannot design them as FIR filters because no FIR fibmponent causal by delaying it by samples.
ter can be allpass (except for a pure delay). We cannofhe delay will mean the introduction of a phase com-
design them as IIR filters, because no stable IIR filter caanent in the response of each polyphase component.
have linear phase. However, it is clear how we want &0 that instead of approximating the ideal fractional ad-
approximate the ideal interpolation filter bank. vanceejwk/ L the polyphase components will approximate
FIR approximations can produce the exact linear phaeé*,’(k/L’M). The group-delay will consequently be of the
while approximating an allpass response as best possifgen
On the other hand, IR approximations will be exactly all- do(w) da(k/L — M)
pass, while trying to produce the required phase. - =-

do dw =M-k/L.
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A problem that arises is that even though the FIR a Magnitude Response (dB)
proximation to the ideal interpolation filter is symmetri ) ‘ ‘ o
and thus has linear phase, the polyphase components
not necessarily symmetric and thus will not necessar " Polyphase subfiter #0 \
have exact linear phase. However, for each non symn — Polyphase sublilier #1 4
ric polyphase filter, there is a mirror image polyphase f “
ter which will have the exact same magnitude respor
with a mirror image group-delay that will compensate ar
phase distortion.

Magnitude (dB)

8.3.1 Nyquist FIR filters

When we analyzed the behavior of the ideal interpolatit ) S S S S
filter in the time-domain, we saw that for every input san Normalized Frequency (- rad/sample)
ple, L samples are produced including one that is exactly

the same as the input sample. This exact copy is “Pifgure 30: Magnitude response for polyphase subfilters of a

duced” by the polyphase filter that has allpass magnitugl@foand FIR filter. Ideally, both subfilters would be perfectly
and zero phase (i.e. the cdse). In practice, this is the allpass.

only polyphase filter that can be designed exactly, albeit
with a group-delay oM rather than zero.

Roughly speaking, a Nyquist filter is one for which . . : -
one of its polyphase components is a pure delay and th g’he following three function calls design three equirip-

leaves the input signal unchanged (except for a possiB g Ii.n_eartphage haltband filters using a differ_ent pair of
delay). When designing an interpolation filter, it is desi?_pemﬂcatlons in each case from the three available -order

able for it to be a Nyquist filter since this will ensure theﬁl\l)' transition-width (TW), and peak passband/stopband
even a nonideal filter will allow the input samples to paég)ple (R)-

through unchanged. It can also be computationally adv%q;firhalfband (102, .47) ; s N and TW
tageous since one of the polyphase subfilters will havegngirhalfband e

multipliers (102,.01,"dev"); % N and R
P ) b3=firhalfband('minorder’, .47, .01);% TW and R
8.3.2 Halfband filters To analyze how the design compares to the ideal inter-

polation filter, we can create an FIR interpolator object
Nyquist filters are also calleith-band filters because theand look at its polyphase subfilters, for example if we use
passband of their magnitude response occupies roudhly third filter,b3,
1/L of the Nyquist interval. In the special case of an in-
terpolation by a factor of 2, the filters are knownhadf- h = mfilt.firinterp(2,2*b3);
band filters. Halfband filters are commonly used whepolyphase (h)
interpolating (or decimating) by a factor of 2.

The cutoff frequency for a halfband filter is always The magnitude and group-delay responses for the
0.5t Moreover, the passband and stopband ripples aayphase components of this filter are shown in Figures
identical, limiting the degrees of freedom in the desigB0and31. Note thatM =N/2L is 16.5 in this case, so that
The functionfirhalfband designs FIR halfband filters.the group-delays are exacty —k/L, k=0,1. The only
The specifications set still follows the triangle metaphdeviation from an ideal filter (ignoring an overall delay of
shown in Figure, taking into account the limitations justM samples) comes from the fact that one of the polyphase
described. subfilters is not perfectly allpass.
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Figure 31: Group-delay response for polyphase subfilters oFgure 32: Magnitude response for polyphase subfilters of a
halfband FIR filter. If the 16.5 samples delay -introduced fdtyquist FIR filter designed with the window method. The
causality reasons- is ignored, the group-delay behaves exapthyphase subfilters better approximate allpass filters than a
as the ideal interpolation filter, with an offset ofL1between comparable equiripple design for the bulk of the frequency band.
the group-delay of each subfiltdr £ 2 in this example).

width simply by TW= pmt/L. In this examplep = 0.1
8.3.3 Other Nyquist filters andL = 4 thus the transition-width is.025rt.

Nyquist filters are characterized in the time-domain By - ;i nyquist (‘minorder’,4,.1,.01); % L=4
their impulse response being exactly equal to zero every
L samples (except the exact middle sample of the impulserhe resulting filter is of 90th order. If we design an
response). This is precisely why we get a polyphase slguiripple filter of the same order and same attenuation,
filter that is a perfect allpass delay and allows the sampigs obtain a filter with a smaller transition width, but that
to be interpolated to pass through the filter unchanged.does not satisfy the time-domain requirement.
Designing a filter that is both a lowpass and simultane-
ously satisfies the just mentioned time-domain characte?- = firceqrip(90,.25,[.01 .01]);
istic is not a trivial task except for the case of window-
based designs] {], [14]. The magnitude responses of the polyphase subfilters for
Nevertheless, the advantage of conventional optintB® Nyquist window-based design are shown in Figite
equiripple designs over a Nyquist window-based desigrfi§r comparison, the magnitude responses for the optimal
not as clear in this case as it is with any conventional logduiripple design are shown in Figugd. Note the bet-
pass filter. We illustrate by example: consider a Kaist& approximation to allpass filters in the Nyquist design
window Nyquist filter design with a stopband attenuatigiPmpared to the equiripple design (albeit for a slightly
of 40 dB. Nyquist filters are often designed in terms &maller interval - this is the tradeoff).
their roll-off factor, p, due to their applications in com- Similarly, if we compare the group-delay response of

munications' The roll-off factor is related to transition-the polyphase subfilters, the Nyquist design once again

better approximates the ideal constant group-delay as
4The well-known raised-cosine filter is a special case of a Nyquist

filter. In fact, the same reason that raised-cosine filters are common,they are able to interpolate without affecting the input samples - namely

to achieve zero intersymbol-interference with a non ideal filter, is whilge fact that the impulse response becomes zero exactly at the right time.
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Figure 33: Magnitude response for polyphase subfilters of a é¢figure 34: Group-delay response for polyphase subfilters of a
timal equiripple lowpass FIR filter. None of the subfilters beNyquist FIR filter of order 90 and = 4.

haves as a perfect allpass, an indication that this is not a Nyquist

filter.

Group Delay
T T

compared to the equiripple design. The group-delay |
sponses for the polyphase subfilters of the Nyquist des
are shown in Figur84. The group-delay responses for th
polyphase subfilters of the equiripple design are shown

—— Polyphase subfilter #0
--—- Polyphase subfilter #1
Polyphase subfilter #2
Polyphase subfilter #3

Figure35. g
- . % ) S - e S Nt \\\,
9 Design of perfect-reconstruction \
two-channel FIR filter banks ° \
. \

A two-channel subband coding filter bank is shown |
Figure 36. FiltersHp(z) andH;(z) are called the analy- T — ‘
sis filters whileGp(z) andG4(z) are the synthesis filters.

The filter bank is called perfect reconstruction if the

end-to-end system acts as a delay, i.e. if the output sigpglure 35: Group-delay response for polyphase subfilters of a

is simply a delayed version of the input. conventional equiripple lowpass design that could be used for
It is well-known, [L(], [15], that perfect reconstructioninterpolation withL = 4.

can be achieved if

I i i
0 6 0 08 9

Normalized Frequency (xn rad/sample)

and Starting with a prototype lowpass filtét(z), the fol-

lowing selection for the filters results in perfect recon-
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Figure 36: Two-channel subband coding filter bank.

Magnitude squared
-

i A
struction,

Ho(z) =H(2) Hi(z) =H(-2) S . ’v\“ T
Go(z) =2H(2) Gi(z2) = —2H(-2)

Normialized Frequenycy (<7 rad/sample)

However, it turns out that in order to achieve perfegigure 37: Magnitude-squared responses of the analysis filters
reconstruction usingolelyFIR filters, it is necessary thatin an FIR perfect reconstruction filter bank. The two filters are
additionally

power-complementary.
Ho(2)H1(—2) — Ho(—2)H1(2) = ¢z
wherec is some constant arlds an integer.

. , 10 Implementing an FIR filter using
The function firpr2chfb designs FIR filters
Ho(2),H1(2),Go(2),G1(z) such that the filter bank

fixed-point arithmetic
achieves perfect reconstruction. The parameters to spec- ) _
ify are simply the filter ordeN and the passband-edg(_severm factors have to be taken into account when imple-

frequencyw,. A prototype lowpass filter is designedne”ti”_g an FIR filter_ l_Jsing fixed-point arithmgtic. For
from which the four required filters are obtained. Fdn€ thing, the coefficients have to be quantized from
example,

(6)

double-precision floating point in which they are designed
into fixed-point representation with usually a smaller
number of bits. We must make sure we make the most
The condition 6) is equivalent to the power comple-Of the limited number of bits we have. Furthermore, per-
mentary condition (becausdy(z) = H(z andH(2)

H(-2)

[hO,h1,90,91] = firpr2chfb(19,.45);

forming the arithmetic in fixed-point will introduce fur-
ther quantization errors when actually filtering with the
quantized coefficients. Once again, we must make sure
we minimize these quantization errors as much as the
We can look at the magnitude-squared responses

hg{dware at hand allows us.
Ho(z),H1(2) using fvtool. The magnitude-squared re-

sponses are shown in Figu8&. Notice how where one 10.1 Some notation

filter’s ripple rises the other filter's ripple declines to add
up to one.

IHo(e/®)|? + |H1(e/®)? = 1, V.

First we will like to introduce the notation used in the
Increasing the filter order (and possibly the passbarﬁi

Iter Design Toolbox to represent fixed-point numbers.
edge frequency) improves the lowpass/highpass sep&?ﬁps'der a register used to store a fixed-point number,
tion provided by the analysis filters but doesn’t have an

- . bobib,  bg-1
effect on the perfect reconstruction characteristic of the
overall system.

ood... O
—_—————
B—bits
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The register haB bits (it has a wordlength @), the value Magnitude Response (dB)

of thekth bit is given byb, which can obviously be only ' ‘ ‘
0 or 1. A two's complement fixed-point number stored i o— Plter #1: Reforence
such a register has a value given by |

B-1
value= —bo2® -1+ 5 by 2B LK1 (7)
=1

Magnitude (dB)

wherelL is a positive or negative integer to be describe

now.
From (7), we can see that the value of a fixed-poir

number is determined by assigning weights of the for

2 ™ to each bit. The leftmost bithy has the largest

weight, 2-1-1, this bit is called the most-significant bit T R

(MSB). The rightmost bitbg_1, has the smallest weight, Normalized Frequency (< rad/sample)

2L, which is why it is called the least-significant bit

(LSB). Figure 38: Magnitude response of the filter quantized with
Given the bit valueshy, the pair{B,L} completely [16,15] format.

characterizes a fixed-point number, i.e. suffices in deter-

mining the value that the bits represent. We call such a

pair the format of a given quantity, and store it in a two- _ ) o
element vector[B, 1]. The magnitude response of the quantized filter is shown

in Figure38. For comparison purposes, the nonquantized
magnitude response is also shown. Note that the stopband
attenuation for the quantized response is significantly less

140 -

10.2 Quantizing the coefficients

Consider the following filter than 80 dB at various frequency bands. The problem is
. the poor utilization of the available range for this, 15]
b=gremez ('minorder’, [0 .11 .14 1],... format as shown in Figura.

[1 100}, .01 .0001]); To make the most of the 16 bits, there are two equiva-

The filter has an attenuation of 80 dB and a its largdent approaches we can take. If we want to use, 15]

coefficient is 0.1206. format, we can scale the coefficients by multiplying them
The first thing to do is check if there are enough bitsy a factor of 8 to make the largest coefficients as close to

available to represent the coefficients and provide the deas possible without overflowing.

quired dynamic range. A good rule of thumb‘[isto  Alternatively, we can usg16,18] format so that the

assume 5dB/bit for the dynamic rarfigen this example quantization range becom¢&1250.125). The magni-

we need at least 16 bits in order to provide the 80 dB @fde response using this format is shown in Figde

attenuation. The improvement over the first case is evident.

It is not sufficient to simply say we are going to Use Note that whether we scale the coefficients and use
16 bits. For example, the following code creates a fixegI6 15] or we don’t scale and we use6, 18], the ac-

point FIR filter using 16 bits to represent the coefficients| stored value (the binary bits) of each coefficient is

in fractional format: the same. However, in the former case, the filter now has
Hq=qfilt (* fir’, (b}, ... a gain of 18 dB due to the multiplication by eight. But
"CoefficientFormat’, [16,15]); this can be compensated at the end, by moving the binary

) _point 3 bits to the left, without changing the bits.
5Note that the usual 6db/bit rule doesn’t apply because quantization

error for the filter coefficients tends to be correlated, especially at theTol emphasize the Pomt regarding the_need to use both
extremes of the impulse response. the right number of bits and use them wisely, we present
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Impulse Response Magnitude Response (dB)
! ! ! T T T T

— 8bits
ol ! 12 bits ||
\ 16 bits

--- 24 bits

92Available quantizer range 1

0

Amplitude
)
Magnitude (dB)

L L L L 160 L I i i L L L i
2 40 50 80 141 160 80 200 0 0.1 02 03 04 05 0.6 0.7 08 0.9 1

T 12
Samples Normalized Frequency (<n rad/sample)

Figure 39: Impulse response of filter to be quantized shown rEigure 41: Magnitude responses for various quantizations of a
ative to the available range for the coefficient format selectedfilter with 80 dB stopband attenuation.

Magnitude Response (dB) have many more multipliers than you can tis®©n the
- ‘ other hand, increasing the precision to 24 bits provides
\ ] only modest improvements in this case.

] 10.3 Fixed-point filtering

Quantizing the coefficients correctly is not the only thing

we need to worry about when implementing an FIR filter

with fixed-point arithmetic. Suppose we want to imple-

ment this filter using the Direct-form structure. The struc-

ture is shown as a reference in Figdéfor 5 coefficients.

For the example at hand, we have 16 bit coefficients, and
e — - suppose we need to filter 16-bit data that is well scaled in

Normalized Frequency (<7 rad/sample) the[—1,1) range. We can generate random data with that
characteristic as follows

Figure 40: Magnitude response of the filter quantized with

[16,18] format. g=quantizer([16,15],'RoundMode’, ' round’);

xg=randquant (q,1000,1);

Magnitude (dB)

81f the specification is changed from 80 dB to 60 dB, 178 multipliers
are required as opposed to 220. If it is reduced to 40 dB, 134 multipliers
the magnitude response of four different quantizations @é required. Of course it is not a given that the application can allow
the same filter. In all cases, the format has been selectetigshange in specifications. The pointis having less than 16 bits makes

unfeasible to attain 80 dB.
cover the rang¢0.1250.125). The responses are showft “In order to reproduce the results, one can reset the seed of

in F.igure"rl- NOt_ice that if you ha\_/e fewe'f than .16 DitShe random number generator prior to generating the random vector:
available, you might as well redesign the filter, since yoand(seed’,0);
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the 16-bit quantized coefficients, all computations are per-
Outpat formed with double-precision arithmetic. Havigg pro-
vides a nice reference signal to compare to.

Now we set the parameters back to their default val-
ues, except the product format is not accurate for this
case. The multiplication of @16, 18] coefficients with
a[l6,15] input sample results in @32, 33] product. On
a DSP processor, we have two 16-bit registers being mul-
tiplied and the result stored in a 32-bit product register.
The correct setting for theroductFormat is [32, 33]:

set (Hqg, ' OutputFormat’,quantizer ([16,15]));
set (Hqg, 'ProductFormat’,quantizer([32,33]));
set (Hg, ' SumFormat’, quantizer ([32,30]));
yg=filter (Hq, xq) ;

An extremely useful tool to monitor what has happened
is qreport (Hq),

Max Min | NOv | NUn | NOps

Figure 42: Direct-form implementation of an FIR filter with 5 Coefficient| 0.12 | -0.026 0 0 220
coefficients. Input | 0.999| -0.999| O 0 1e3
Output | 0.474| -0.536| O 2 le3

Multiplicand | 0.999| -0.999| O 0 22e3

We will use [16, 18] format for the coefficients for illus- Prod| 0.12| -0.12| O 0 22e3
tration purposes. Since the input is already quantized, we Sum| 0.527| -0.537| O 0 22e3

don't need an input quantizer or a multiplicand quantizer, . =
putq P q which in this case reports that no overflows have occurred.

Hg=qfilt (' fir’, {b}, ... To measure how good the output is, we compute the en-
"CoefficientFormat’, [16,18]); ergy of the error and the maximum error,
set (Hg, ' InputFormat’, 'none’)

set (Hg, 'MultiplicandFormat’,’none’); Zizm (yi-ya,2)
For reference, the other parameters are set by default as 0.00054794884123692
follows: norm(yi-yq, inf)
— ans =
OutputFormat = [16 15] 3.05137364193797e-005
ProductFormat = [32 30]
SumFormat = [32 30] Looking at Figure42, one can see there is clearly a

source of error when moving the data from the set of
adders (what would be the accumulator in a DSP proces-
sor) to the output. Indeed, the wordlength is being re-

however, we will temporarily set them taone’ to have
a reference to compare to:

set (Hq,’ OutputFormat’,’none’); duced from 32 to 16 bits. A model of what is happening
set (Hq, ' ProductFormat’,’none’); is shown in Figuret3.

set (Hg, ' SumFormat’,’none’); The theoretical power spectrum of the quantization
yi=filter (Hq, xq); noise at the output of the filter corresponding to the model

. . _ . inFigure43is given by
The quantityyi represents the “ideal” output. This is the

best output we can hope to compute. Aside from using S/(w) = |Hn(e!®)[?02
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b bits Quantization noise power spectrum
T T T T T T T

Output
Quantizer

Estimated power spectrum
—— Theoretical power spectrum

Power spectrum (dB)

. . . . . . L .
0.1 0.2 03 04 05 06 07 08 0.9 1
Normalized Frequency (xn rad/sample)

Figure 43: Model showing the quantization noise by reducifiddure 44: Theoretical and estimated power spectrum of the
the number of bits from the adders to the output. quantization noise.

where Hy(el®) is the transfer function from the noiseSet (Ha, "OutputFormat’, quantizer ([32,301));
source to the output -in this case simply one-, adds Ya=filter(Hq, xq);
the power spectrum of the noise source -in this case itf&rm (y1-vd, 2)

constant and equal to the variance of the ribise ans =
2.02838467848398e-006
2 22(1—b) . )
= norm(yi-yq, inf)
. . . . ans =
whereb is the number of bits. So in this case, the theoret- 7.98609107732773e-008

ical power spectrum is constant and for 16 bits it is, ) o
While the error has clearly been reduced, there is still
S/(w) = 10logg 22(;215) =-101100811159671dB  some left, indicating some roundoff still present in the
] ] system. This is confirmed by looking at the power spec-
An estimate of the noise power spectrum can be compuifdh, for the noise usingln. The plot of the power spec-
with thenln function, trum is shown in Figurel5. The noise is obviously less
[H,w,Pnn]=nlm(Hq, 512,100); than before (about -168 dB), which is consistent with the
) _ smaller errors we computed. To find the source of the
A plot of Pnn (in dB) compared to the theoretical powegroy it is simply a matter of looking at the discrepancy
spectrum is shown in Figueé4. . between the product format and the sum format.
If the quantization noise shown in Figu#8is the only  The sum format is set 1032, 30] so that the three least
noise in the system, we should be able to get an outgipificant bits from the product register are basically be-
that exactly matchegi by setting the output format toing lost. We may be tempted to make the sum format the

be the same as the sum format (one can think of it as figne as the product format, but overflows occur left and
ability to “look inside the accumulator”), right

8Strictly speaking, this formula is approximate because the signal at , , . .
the accumulator does not cover the entire rajpgk 1) and because we set (Hq’ SumFormat’,quantizer([32,33]));
are not quantizing an analog signal, rather we are reducing the numpgrfilter (Hq, xq) ;
of bits in an already quantized signal. Warning: 1944 overflows in QFILT/FILTER.
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Quantization noise power spectrum Quantization noise power spectrum
T T T T T T

-165
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Figure 45: Noise power spectrum when making the output fdfigure 46: Noise power spectrum when setting both the sum
mat equal to the sum format. format and the output format to [32,31].

The problem is that for additions, in genekdlits are not 2.93366611003876e-008

enough to always store the result of adding two quantities . i )

with k bits each. Overfloumightoccur, and when adding©"'Ce 29ain, the better results are confirmed bywhich

S0 many numbers (220 in this example) chances are vBRY Shows a power spectrum for the noise of -174 dB.
high that it will occur. So it is preferable to live with some 1€ POWer spectrum plotis shown in Figuté

roundoff error, rather than to overflow (the two-norm of

the error is a whooping 2.09011261755715, while the i40.3.1  Using an accumulator with extended precision

finity norm is 0'2857_11827455089)' . The results obtained previously are the best we were
We can follow a trial-and-error procedure_ reducing trE\eole to obtain with a 32-bit accumulator such as that
sum format to[32, 321, [32,31], etc. until no over- available in some early DSP processors. Modern DSP

flow occurs. However, a better way is to go back to ﬂb‘;‘}ocessors provide an accumulator with extended preci-

[32 30] settmg, filter, and look at the report given b3éion, so-calledyuard bits typically 40 bits when the data
greport. For this examplegreport shows that the max'glyrdlength is 16 bits

imum ?_ndl ml_r|1_|r:nun; sum \f/aluest ag(; 2'1527 _lflir;)d ;?]‘53 If such an accumulator is available, we can get better
respectively. Therefore, a format 052, 31] will be the g ;1o gnce again if we use the extra bits wisely. For

optimal §ett|ng to minimize quantization noise while n%stance, the following setting for the sum format will not
overflowing. do

set (Hg, ' SumFormat’,quantizer([32,31]));
set (Hq, 'OutputFormat’,quantizer ([32,31]));
ya=filter (Hq, xq) ;

set (Hg, ' SumFormat’,quantizer ([40,31]));
set (Hqg, ' OutputFormat’,quantizer ([40,31]));

norm (yi-yg, 2) because no overflow occurred with the2, 31] setting

ans = anyway. So throwing extra bits does no good (the errors
7.53800283935414e-007 are exactly the same as for the2, 31} case). However,

norm(yi-yg, inf) if we set the LSB weighting the same as for the product

ans = format, namely, if we use the following setting,
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set (Hqg, ' SumFormat’,quantizer ([40,33]));

CFIR PFIR
set (Hg, ' OutputFormat’, quantizer ([40,331)); B S-stage CIC = > L2 [ >l >

21 taps B3 taps

the errors between “ideal” and actual become exactly

zero. Of course, in this example it was not necessary fdgure 47: Block diagram of the decimation part of the DDC.

have a full 40-bit accumulator to achieve an output ex-

actly equal to what we have called ideal. Once again,

from the report generated witlireport it was evident

that a setting off 34, 33] for both sum and output would

have done. For decimation purposes, the 4016 provides for a multi-
In an actual DSP processor the output is not of the sastage approach consisting of 3 FIR filters. Of the three fil-

width as the accumulator, so realistically we need to gets, one is a cascaded integrator-comb (CIC) 5-stage dec-

the output format back to either 16 bits or 32 bits in thisnator and two are programmable decimate-by-two FIR

example. Assuming we have 32 bits for the output, Vigters.

can once again determine the best possible output setting

by usingqreport. In this case,[32,31] is the best set- The multistage decimator block diagram is shown in

ting because the minimum value reported at the outpufigure47. The 5-stage CIC filter takes the high-rate in-

-0.5357. The two-norm and infinity-norm of the errors afeut signal and decimates it by a programmable factor.

The CIC filter is followed by a 21-tap compensation FIR

(CFIR) filter that equalizes the “droop” due to the CIC fil-

ter and provides further lowpass filtering and decimation

by 2. The CFIR is followed by a 63-tap programmable

FIR (PFIR) filter that is used for a final decimate-by-2.

norm(yi-yq, 2)

ans =
6.82098421980174e-009

norm(yi-yq, inf)

ans =

3.49245965480804e-010 One thing to note is that in a multistage decimator one

which compare favorably with 7.53800283935414e-0@%ould always put the simplest filter first (that is, work-
and 2.93366611003876e-008 respectively (which wepg at the highest rate), and would progressively increase

the best we could do for a 32-bit output with a 32-bit aéhe complexity of the filters in subsequent stages. This
cumulator). is exactly what happens here, the CIC filter is attractive

at high rates because it provides multiplierless operation.

. The filter provides (coarse) lowpass filtering using adders

11 A design example and delays. The filter is not without its drawbacks though,

its magnitude response is very far from ideal and exhibits

In this section we present an example of designing two'droop” in the passband which progressively attenuates
FIR filters for use on a digital down-converter (DDC) t@ignals. The CFIR filter is also relatively simple, having
be used to downconvert a GSM signal. The hardwaredgly 21 taps. Its primary mission is to compensate for the
work with is a Graychip 4016 multi-standard quad DD@roop from the CIC filter. The PFIR filter is the most com-
chip [17]. plex of the three, requiring 63 multiplications per sample,

Roughly speaking, a digital down-converter has twghich is why it operates at the lowest rate.
main parts. The first section, which consists of a

numerically-controlled oscillator (NCO) and a mixer is It is worth pointing out that this is a good example of
used to “bring” an IF signal down to baseband. The seaesigns that require a fixed filter order. Also, both the
ond section is a (multistage) decimator used to isolate BEIR and PFIR are linear-phase filters by construction,
desired signal. the designer can specify only half of its multipliers. Lin-

In this design example we concentrate on the secoza phase is usually a desirable characteristic in data trans-
part, i.e., we assume the signal has been moved to basission. The available wordlength for the coefficients of
band in a satisfactory manner. both the CFIR and PFIR filters is 16 bits.
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11.1 Using the 4016 for GSM

The 4016 is programmable so that it can be used with m Bl
tiple standards. To this extent, the decimation factor ‘
the CIC filter can be selected as well as the coefficier
for both the CFIR and the PFIR filters.

For the particular case of GSM, we have the followin
requirements17]

Magnitude Response (dB)
T T

Magnitude (dB)

Input sample rate: 69.333248 MHz

CIC decimation factor: 64

CFIR input sample rate: 1.083332 MHz

s 2
Frequency (MHz)

PFIR input sample rate: 541.666 kHz

PFIR output sample rate: 270.833 kHz
Figure 48: Magnitude response of 5-stage CIC decimator.

Passband width: 80 kKz

e Passband ripple: less than 0.1 dB peak to peak

Magnilude Respons? (dB) ‘
The CIC filter has 5 stages and a decimation factor —~—__

64. To view the magnitude response of this filter, we ci o1 S

simply create a CIC decimation object and dseool, N

Hcic=mfilt.cicdecim(64,1,5);

fvtool (Hcic)

The magnitude response is shown in Figd8e The filter

Magnitude (dB)

Frequency (MHz): 0.08040355
Magnitude (dB): -0.3941334
a

exhibits a|sin(x)/x|> shape. It also has a large DC gai 1 N
(more than 180 dB), that has to be compensated for. ) N\
compensate for this large gain, the 4016 provides a pow o
of-two scaling prior to data entering the filter, in order t

avoid overflows. T i e o e e
Frequency (MHz)

11.1.1 Designing the CFIR filter

. . . . . Figure 49: Passhand details of scaled 5-stage CIC decimator.
Since the overall passband that is desired is 80 kHz, it is

worthwhile to look at the CIC response in this band to get
an idea of what the CFIR filter must compensate for. The
passhand details of the CIC filter are shown in Figtde ~ We choose to use theirceqrip function for the fol-
The filter shows a droop with an attenuation of about 0l@ving important reasons:
dB at 80 kHz. This is far more than the allowable peak to
peak ripple.

We want to design an optimal equiripple filter to make
the most of the 21 taps availa_b_le. Since only 11 cogﬁi-. The filter order is specifiable.
cients are actually freely specifiable, we are constrained
to a linear-phase design. e It allows for a slope in the stopband, which we will

¢ |t allows for compensation of responses of the form
| sin(x) |N
.
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use to attenuate spectral replicas of the PFIR filt Magnitude Response (dB)
that follows. ” T T
o --- CFIR: Reference
e We can constrain the peak passband and stopb \\_‘
ripples. N

e Instead of the cutoff frequency, we can specify tt
passband-edge frequency. In this particular ca:
since the passband is the inter{@BOkHZ, we want
to compensate for the CIC droop in the passbha

only. - i |

Magnitude (dB)

The filter order is determined for us by the hardwar

For the passband-edge frequency, we select 80 kHz, si o
this the final passband of interest. We choose a very sn  Frequency MHD)
passband ripple, 0.01 dB, in order for the overall rippie
to be way within spec, keeping in mind there is still the
PFIR filter to follow which will add its own passband rip-
ple. The stopband attenuation is selected as 40 dB with a
60 dB slope to provide adequate attenuation of the PFIR
spectral replicas. Because this is a 5-stage CIC, the draois is shown in Figur&1l. We can see the spectral repli-
is of the form\m\? so we select 5 as the sinc powetas of the CFIR filter centered around the frequency it is

X
to compensate for. Finally, the sinc frequency factor d@perating at, 1.083332 MHz. It is hard to see the sinc-

Figure 50: Magnitude response of CFIR filter.

chosen as 0.5. compensation in this plot. For this we zoom in further.
The zoomed-in plot is shown in Figuk®. The plot cov-

N = 20; % Filter order ers approximately the bari@, 120kH3Z. It is evident from

Npow = 5; % Sinc power the plot that the combined response is virtually flat in the

w = 0.5; % Sinc frequency factor passband (up to 80 kHz).

Apass 5.7565e-004; % 0.01 dB

Astop = 0.01; % 40 dB

Aslope = 60; % 60 dB slope 11.1.2 Designing the PFIR filter

Fpass = 80/541.666; % Passband-edge

cfir = firceqrip(N,Fpass, [Apass, Astopl,...
"passedge’,’"slope’, ...
Aslope,’invsinc’, [w,Npow]);

Hecfir = mfilt.firdecim(2,cfir);

An overlay of the GSM spectral mask requiremeritg [
with the combined response of the CIC filter and the CFIR
filter is shown in Figures3. It is evident from the plot
that the combination of these two filters is not sufficient to
meet the GSM requirements for either adjacent band re-
The magnitude response of the CFIR filter is shown jection or blocker requirements. The combined filter still
Figure50 quantized to 16 bits. Without zooming in, it ihas a transition band that is too large, due to the large
hard to see the passband inverse-sinc response. Weteamsition band from the CFIR filter.
see however, as expected, the large transition width along’he PFIR filter is intended to be used to do the extra
with the sloped stopband. Since the largest coefficientwbrk required to meet the GSM specifications. It is a
the CFIR filter is 0.37, we use @6, 16] format to make linear-phase FIR filter consisting of 63 taps. The design
the most of the 16 bits available. gets a little tricky though. We know that the passband-
To get an idea of the combined filter CIC*CFIR, wedge is 80 kHz, and the first adjacent band is at 100 kHz.
overlay the magnitude response of each of these filtdfsye design a simple lowpass filter wileme z Or gremez
along with the combined magnitude response of the tvas follows:
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Figure 51: Magnitude response of CIC filter and CFIR filtéfigure 53: Magnitude response of combined CIC and CFIR fil-
overlayed, along with the combined response of the two.

Magnitude Response (dB)
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ters overlaid with the GSM spectral mask requirements. Clearly

the combination of these two filters does not meet the GSM re-
quirements.

pfir= gremez (N,F,A,W);
Hpfir = mfilt.firdecim(2,pfir);

The passband ripple requirement is not quite met. We can
alter the weights to get better passband ripple, but we must
be careful not to violate the adjacent band specifications.
A setting ofw = [10, 1]; would do the trick, but with
significantly less adjacent band attenuation. A compro-
mise can be achieved by setting up the design as a low-
pass with two separate stopband regions, each one with a
different weight to be used in the optimization:

N = 62;
Fs=541666;

Figure 52: Passband details for the magnitude response of EkJ0 80e3 100e3 122e3 132e3 541666/2]/ (Fs/2);
filter and CFIR filter overlayed, along with the combined rex = [1 1 0 0 0 0];

sponse of the two.

N = 62;

Fs=541666;

F=[0 80e3 100e3 541666/2]/(Fs/2);
A=[1100];

Ww=1[11];

W= [10 1 10];
pfir= gremez (N,F,A,W);
Hpfir = mfilt.firdecim(2,pfir);

The quantized PFIR filter is shown in Figusd. The
maximum coefficient is 0.3378 so once again we use the
[16,16] format. The reference (nonquantized) filter is
also shown, but it is practically indistinguishable from the
guantized response. The different attenuation in the two
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Figure 54: Magnitude response of PFIR filter. Figure 56: Combined response of CIC, CFIR, and PFIR filters,
along with GSM spectral mask requirement.

Magnitude Response (dB)

The overall response of the combination
CIC*CFIR*PFIR is shown in Figure56. The GSM
spectral mask requirements are now easily met as is
clearly shown in the figure. The passband details are
shown in Figure57. The requirement that the peak to
peak ripple be less than 0.1 dB is easily met. Clearly
the design could be further tuned to provide a smaller
transition width at the expense of larger peak to peak
passband ripple and/or lesser adjacent band rejection.
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